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Abstract. This article addresses the derivation and analysis of a weighted optimal quadrature formula in
the Hilbert space W(2,1)

2 (0, 1), where functions φ with prescribed properties reside. The quadrature formula
is expressed as a linear combination of function values and its first-order derivative at equidistant nodes
in the interval [0, 1]. The coefficients are determined by minimizing the norm of the error functional in the
dual space W(2,1)∗

2 (0, 1). The error functional is defined as the difference between the integral of a function
over the interval and the quadrature approximation. The key results include explicit expressions for the
coefficients and the norm of the error functional.

The optimization problem is formulated and solved, leading to a system of linear equations for the
coefficients. Analytical solutions of the system are obtained via the Sobolev method, which provides an
explicit expression for the optimal coefficients. The convergence with the exact values of the integrals is
analyzed via numerical experiments.

1. Introduction

Quadrature formulas are used to estimate definite integrals and are essential for solving differential
and integral equations numerically. These formulas involve nodes and coefficients, and there are various
methods available to construct them. One such method is the variational approach, which is based on the
principles and functionals of variational calculus. The primary objective of this approach is to identify the
nodes and weights that minimize or maximize a specific functional related to the estimation of the integral.
Several studies have been conducted on this approach [4, 5, 7, 9, 12, 16, 21, 23, 24, 27, 37].

In general, the following quadrature rules can be used to compute integrals with a weight function∫ b

a
p(x) f (x)dx ≈

N∑
β=1

Cβ f (xβ),
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where p(x) is a integrable over the interval (a, b) weight function. By including the effect of p(x) in the
quadrature weights and points, one can obtain an accurate approximation of the integral even for integrands
that behave poorly, such as singular, discontinuous, or highly oscillatory functions.

The main advantage of using weighted quadrature rules is that they can handle the ”bad” behaviour
of p(x), which is known and can be factored out into the weight function. By designing a quadrature rule
with p(x) taken into account, one can achieve fast convergence, provided that the remaining factor f (x) is
smooth. Moreover, the same rule can be used for different f (x) as long as p(x) remains the same.

The challenges inherent in devising weighted quadrature formulas involving derivatives have garnered
significant attention from researchers, yielding various findings across different domains.

For instance, in the study by Shadimetov and Nuraliev [31], the quadrature summation comprises values
of the integrand at internal nodes alongside the first, third, and fifth derivatives of the integrand at the
endpoints of the integration interval. The optimal coefficients for quadrature formulas were determined,
and the norm of the optimal error functional was computed for any natural number N and any m ≥ 6
utilizing the Sobolev method. This approach relies on a discrete analogue of the differential operator
d2m/dx2m. Notably, for m = 6, 7, the optimality of the classical Euler-Maclaurin quadrature formula was
established. Beyond m = 8, novel optimal quadrature formulas were derived. Similarly, in [30], for m = 4
and m = 5, the classical Euler-Maclaurin quadrature formula was found to be optimal. Starting from m = 6,
new optimal quadrature formulas were obtained. In [19], such results were also obtained.

A large number of scientific studies have been devoted to the construction of optimal quadrature
formulas with weight p(x) = e2πiωx (highly oscillatory) in the sense of Sard and their application. Previous
studies [8, 10, 14, 15, 20, 22, 33, 38] have focused on the construction of optimal quadrature formulas for
the numerical integration of Fourier integrals in the Hilbert and Sobolev spaces and applied these results
to computed tomography problems.

Even in cases where p(x) is weakly singular [3, 6, 11, 13, 32] and singular [1, 2, 28], optimal quadrature
formulas were constructed in different Hilbert and Sobolev spaces.

The paper is structured as follows: Section 2 presents the auxiliary results; Section 3 presents the
problem; Section 4 estimates the error functional of the quadrature formula; Section 5 finds the extremum
of the error functional norm; Section 6 discusses the algorithm for solving the system of equations; Section
7 obtains the analytical forms of the optimal coefficients; and Section 8 presents some discussion and
numerical results.

2. Auxiliary results

In [29], the following weighted optimal quadrature formula in L(1)
2 (0, 1) space:∫ 1

0
p(x)φ(x)dx �

N∑
β=0

Cβ,0φ(xβ) (1)

was constructed, where xβ = hβ ∈ [0, 1], h = 1
N is the step size, weight function p(x) is the integrable over

the interval [0, 1], and a function φ(x) belongs to the Sobolev space

L(1)
2 (0, 1) = {φ : [0, 1]→ R | φ is abs. cont. and φ′ ∈ L2(0, 1)}.

The coefficients Cβ,0 of the quadrature formula (1) have the following form (β = 0,N):

Cβ,0 =
h−1

2

∫ 1

0
p(x)

(
|x − h(β − 1)| − 2|x − hβ| + |x − h(β + 1)|

)
dx. (2)

The quadrature formula of the form (1) was constructed in the work [17] in the space W(1,0)
2 (0, 1).

To achieve high accuracy, we are developing an optimal quadrature formula that includes a derivative.
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3. Statement of the problem

Given a table of function values φ(xβ) and its first derivative φ′(xβ) at points xβ ∈ [0, 1], where
β = 0, 1, . . . ,N, we assume that this function belongs to the Hilbert space W(2,1)

2 (0, 1) = {φ : [0, 1] →
R | φ′ is abs. cont. and φ′′ ∈ L2(0, 1)}, equipped with the norm

∥∥∥φ|W(2,1)
2 (0, 1)

∥∥∥ =


1∫
0

(
φ′′(x) + φ′(x)

)2dx


1/2

, (3)

where
1∫

0

(
φ′′(x) + φ′(x)

)2dx < ∞. We can easily verify that (3) is a semi-norm.

We denote by P = span{1, e−x
} the space consisting of all possible linear combinations of functions 1 and

e−x. We form a factor space of W(2,1)
2 (0, 1) space with respect to P. That is, if f1 − f2 ∈ P , we take f1 ∼ f2 and

say that they belong to one class, and we define this class as f (x) = f (x) + P. Here

f1(x) − f2(x) = a0 + a1e−x
⇒ f1(x) = f2(x) + a0 + a1e−x,

a0 and a1 are real numbers. In particular, the zero element θ(x) of this factor space has the following form
θ(x) = a0 + a1e−x.

For convenience, let’s denote the resulting factor space W(2,1)
2 (0, 1)/P as W(2,1)

2 (0, 1) again. Furthermore,
when working with elements of this space, such as the element f (x), it is sufficient to work with any function
f (x) belonging to this class. For the elements of the resulting factor space, the relationship defined by
equation (3) satisfies all conditions of a norm. In particular, ∥φ∥W(2,1)

2
= 0 if and only ifφ(x) = θ(x) = a0+a1e−x.

And the inner product in this space is defined by the following formula

⟨φ,ψ⟩ =

1∫
0

(
φ′′(x) + φ′(x)

) (
ψ′′(x) + ψ′(x)

)
dx. (4)

We consider a quadrature formula in the space W(2,1)
2 (0, 1) given by∫ 1

0
p(x)φ(x)dx �

N∑
β=0

Cβ,0φ(xβ) +
N∑
β=0

Cβ,1φ′(xβ). (5)

Constructing an optimized quadrature formula by both coefficients Cβ,0 and Cβ,1 can be a complex
problem. The process involves successive optimizations. Initially, we take the coefficients (2) rather than
Cβ,0 and optimize the quadrature formula (5) with respect to the coefficients Cβ,1. It is worth noting that in
[18], the optimal quadrature formula was constructed using this sequence while considering the constant
weight function in the W(2,1)

2 (0, 1) space. In this construction, the coefficients of the trapezoidal formula
are obtained as the coefficients Cβ,0. Furthermore, the coefficients Cβ,1 are found, leading to the optimal
quadrature formula of the Euler-Maclaurin type.

Furthermore, we studied the difference

(ℓ, φ) =
∫ 1

0
p(x)φ(x)dx −

N∑
β=0

Cβ,0φ(xβ) −
N∑
β=0

Cβ,1φ′(xβ). (6)

The difference (6) is called the error of the quadrature formula (5). Here

(ℓ, φ) =
∫
∞

−∞

ℓ(x)φ(x)dx
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and

ℓ(x) = p(x)ε[0,1](x) −
N∑
β=0

Cβ,0δ(x − xβ) +
N∑
β=0

Cβ,1δ′(x − xβ) (7)

is the error functional of the quadrature formula (5) and belongs to the space W(2,1)∗
2 (0, 1). The space W(2,1)∗

2 (0, 1)
is dual to the space W(2,1)

2 (0, 1). Here, ε[0,1] (x) is the characteristic function of the interval [0, 1], and δ(x) is
Dirac’s delta-function.

From (7), it is clear that the error functional ℓ defined in the space W(2,1)
2 (0, 1) satisfies the following

equalities: (see [25, 26])

(
ℓ, e−x) = 0 (8)
(ℓ, 1) = 0. (9)

Applying the Cauchy-Schwarz inequality, we estimate the absolute value of the error (6) as follows:

|(ℓ, φ)| ≤ ∥φ∥W(2,1)
2
· ∥ℓ∥W(2,1)∗

2
,

where

∥ℓ∥W(2,1)∗
2
= sup
φ, ∥φ∥,0

|(ℓ, φ)|
∥φ∥

.

From this, we derive the following problem.
Problem 1. Find the norm of the error functional ℓ of the quadrature formula (5) in the space W(2,1)∗

2 (0, 1).
It is evident that the norm of the error functional ℓ depends on the coefficients Cβ,1 and the nodes xβ.

Minimizing ∥ℓ∥ by adjusting the coefficients Cβ,1, is a straightforward linear problem. However, when we
try to minimize ∥ℓ∥ by the coefficients Cβ,1 and the nodes xβ, this becomes a more complicated and nonlinear
problem. Our goal is to minimize ∥ℓ∥ by finding the optimal values for the coefficients Cβ,1 while keeping
the nodes xβ fixed.

The primary objective of this study is outlined as follows:
Problem 2. Find the coefficients C̊β,1 that minimize the value of ∥ℓ∥W(2,1)∗

2
, and compute∥∥∥ℓ̊∥∥∥W(2,1)∗

2
= inf

Cβ,1
∥ℓ∥W(2,1)∗

2
. (10)

The functional ℓ̊ in (7) is termed the error functional corresponding to the optimal quadrature formula
in W(2,1)

2 (0, 1), and C̊β,1 are called the optimal coefficients. For convenience, we will retain the optimal
coefficients C̊β,1 as Cβ,1.

4. Estimation of the error functional

To solve Problem 1, our initial step is to determine the norm of the error functional. According to
the Riesz theorem, any linear continuous functional ℓ in a Hilbert space is represented in the form of inner
product (4). Therefore, in our case, for any function φ from W(2,1)

2 (0, 1) space, we have(
ℓ, φ

)
= ⟨ψℓ, φ⟩.

Here,ψℓ is a function from W(2,1)
2 (0, 1) that is defined uniquely by the functional ℓ and is an extremal function

(see, [10])

ψℓ(x) = ℓ(x) ∗ G2(x) + de−x + p0. (11)
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Herein

G2(x) =
sign(x)

2

(
ex
− e−x

2
− x

)
. (12)

Now we obtain the norm of the error functional ℓ. Since the space W(2,1)
2 (0, 1) is the Hilbert space then

by the Riesz theorem we have(
ℓ, ψℓ

)
= ∥ℓ∥ · ∥ψℓ∥ = ∥ℓ∥

2.

Specifically, using (11) and (12), we derive

∥ℓ∥2
W(2,1)∗

2
=

∫ 1

0

∫ 1

0
p(x)p(y)G2(x − y)dxdy − 2

N∑
β=0

Cβ,0

∫ 1

0
p(x)G2(x − xβ)dx

+

N∑
β=0

N∑
γ=0

Cβ,0Cγ,0G2(xβ − xγ) −
N∑
β=0

N∑
γ=0

Cβ,1Cγ,1G′′2 (xβ − xγ)

+2
N∑
β=0

Cβ,1


∫ 1

0
p(x)G′2(x − xβ)dx +

N∑
γ=0

Cγ,0G′2(xβ − xγ)

 . (13)

5. The error functional norm

We consider the Lagrange function

Φ(C0,1,C1,1, . . . ,CN,1, λ) = ∥ℓ∥2
W(2,1)∗

2

− 2λ(ℓ, e−x)

to find the minimum of (13) under the conditions (8) and (9).
We take the first partial derivatives with respect to Cβ,1 (β = 0, 1, . . . ,N) and λ of the function Φ and

equating them to zero, we obtain the following system of linear equations

N∑
γ=0

Cγ,1G′′2 (xβ − xγ) + λe−xβ = F2(xβ), β = 0, 1, . . . ,N, (14)

N∑
γ=0

Cγ,1e−xγ = 1, (15)

where

F2(hβ) =
N∑
γ=0

Cγ,0G′2(xβ − xγ) +

1∫
0

p(x)G′2(x − xβ)dx, (16)

1 =

N∑
γ=0

Cγ,0e−xγ −

1∫
0

p(x)e−xdx, (17)

and the function G2(x) is defined from (12). Additionally, generalized derivatives of this function have the
following forms

G′2(x) =
sign(x)

2

(
ex + e−x

2
− 1

)
and G′′2 (x) =

sign(x)
2

(
ex
− e−x

2

)
.
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G′′2 (x) is the function G1(x) which is a fundamental solution to the differential operator d2

dx2 − 1 (see [11]), that
is,

G1(x) =
sign(x)

2

(
ex
− e−x

2

)
. (18)

In equations (14) and (15), there are N+ 1 unknowns and N+ 1 equations. For a solution to exist for this
system of equations, it is sufficient that N ≥ 1.

This system of linear equations (14) and (15) has a unique solution, as shown in [3], and its solution
gives a minimum value to the expression (13).

Next, an analytical solution to the system of equations (14) and (15) is derived.
Assuming Cβ,1 = 0 for β < 0 and β > N, and using the convolution of discrete functions [34], we rewrite

the system of equations (14) and (15) as equations in convolutions


Cβ,1 ∗ G1(xβ) + λe−xβ = F2(xβ), 0 ≤ β ≤ N,
Cβ,1 = 0, β < 0 and β > N,∑N
γ=0 Cγ,1e−xγ = 1,

(19)

where xβ = hβ.

6. The algorithm for solving the system of linear equations

Here, we use the method suggested by Sobolev [34–36] for the discrete analogue of the differential
operator d2

dx2 − 1. The discrete analogue of the operator d2

dx2 − 1 has the following form [10]:

D1(hβ) =
1

1 − e2h


0, |β| ≥ 2,
−2eh, |β| = 1,
2(1 + e2h), β = 0.

(20)

The solution of the system (19) is found by introducing the function U2(hβ) in place of Cβ,1

U2(hβ) = Cβ,1 ∗ G1(hβ) + λe−hβ, (21)

and the operator D1(hβ) satisfying D1(hβ) ∗ G1(hβ) = δd(hβ), where δd(hβ) is the discrete delta-function. The
coefficients are expressed as

Cβ,1 = D1(hβ) ∗U2(hβ). (22)

If we determine the function U2(hβ) for all integer values β, we can find the coefficients Cβ,1 from equation
(22).

From expression (21), taking into account (18), we have

U2(hβ) = Cβ,1 ∗ G1(hβ) + λe−hβ

=

∞∑
γ=−∞

Cγ,1
sign(hβ − hγ)

4

(
ehβ−hγ

− ehγ−hβ
)
+ λe−hβ.

According to the assumption that Cβ,1 = 0 when β = −1,−2, . . . , and β = N + 1,N + 2, . . ., we obtain

U2(hβ) =

N∑
γ=0

Cγ,1
sign(hβ − hγ)

4

(
ehβ−hγ

− ehγ−hβ
)
+ λe−hβ. (23)
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From expression (23) when β < 0 and β > N, taking into account the last equation of the system (19), we
obtain

U2(hβ) =


−

ehβ

4 1 + (λ + L)e−hβ, β < 0,
F2(hβ), 0 ≤ β ≤ N,
ehβ

4 1 + (λ − L)e−hβ, β > N,
(24)

where, L = 1
4

∑N
γ=0 Cγ,1ehγ. Using (20) and (22) we find the unknowns λ + L and λ − L when β = −1 and

β = N + 1 in (24), respectively. Therefore, we obtain the following

λ + L = F2(0) +
1

4
and λ − L = F2(1)e −

e21

4
.

We rewrite the function U2(hβ) taking into account the last equalities

U2(hβ) =


−

ehβ

4 1 +
(
F2(0) + 14

)
e−hβ, β < 0,

F2(hβ), 0 ≤ β ≤ N,
ehβ

4 1 +
(
F2(1) − e

41
)

e1−hβ, β > N.
(25)

7. The optimal coefficients

Now, utilizing (20) and (25), we find the optimal coefficients Cβ,1 for β = 0, 1, . . . ,N:

Cβ,1 = D1(hβ) ∗U2(hβ) =
∞∑

γ=−∞

D1(hγ)U2(hβ − hγ) (26)

where D1(hβ) and U2(hβ) are defined by expressions (20) and (25), respectively.
For β = 0, the coefficient C0,1 is given by:

C0,1 =
2

1 − e2h

(
1

4
(1 − e2h) + F2(0) − ehF2(h)

)
. (27)

Now we calculate the coefficients Cβ,1 from (26) when β = 1, 2, . . . ,N − 1

Cβ,1 =
2

1 − e2h

(
−eh(F2(h(β − 1)) + F2(h(β + 1))) + (1 + e2h)F2(hβ)

)
.

Similarly, the coefficient CN,1 is found as:

CN,1 =
2

1 − e2h

( e1
4

(1 − e2h) + eh(ehF2(1) − F2(1 − h))
)
.

Thus, the following theorem is proven.

Theorem 7.1. The coefficients of the optimal quadrature formula (5) with equidistant nodes in the space W(2,1)
2 (0, 1)

have the following forms:

C0,1 =
2

1 − e2h

(
1

4
(1 − e2h) + F2(0) − ehF2(h)

)
,

Cβ,1 =
2

1 − e2h

(
−eh(F2(h(β − 1)) + F2(h(β + 1))) + (1 + e2h)F2(hβ)

)
,

β = 1, 2, . . . ,N − 1,

CN,1 =
2

1 − e2h

( e1
4

(1 − e2h) + eh(ehF2(1) − F2(1 − h))
)
.

Remark 1. The quadrature formula (5) with the coefficients given in Theorem 7.1 is exact for the functions 1,
e−x, ex, sinh(x), and cosh(x).
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8. Numerical results

In this section, we present the numerical results that validate the theoretical findings obtained in
the previous sections.

Now, let us explore the following example. We numerically validate the optimal quadrature formula
by utilizing Python. The computations encompass a range of functions with distinct values of N. We can
estimate the convergence order (rate) of our quadrature formula using Big O notation based on the error
analysis.

Ratio of Errors: Take the ratio of the errors obtained for consecutive node numbers (assuming the errors
monotonically decrease as n increases). This ratio helps compare how much the error shrinks when the
number of nodes doubles.

Logarithmic Relationship: Apply the logarithm (base 2 is commonly used) to the error ratio. This
transformation helps establish a relationship between the error and the number of nodes (n) on a logarithmic
scale. The Big O notation addresses asymptotic behavior, and the logarithmic transformation aligns well
with that concept.

Interpretation based on the limit: As the number of nodes (n) tends to infinity, the limit of the
logarithmic error ratio should be a constant value (ideally positive). This constant reflects the convergence
order of the quadrature formula.

Understanding the Limit:

• A limit close to 1 indicates linear convergence (the error is proportional to 1/n).

• A limit close to 2 suggests quadratic convergence (the error is proportional to 1/n2), which is generally
faster than linear convergence.

• Higher limits imply even faster convergence rates (the error is proportional to 1/n3 or even higher
powers of 1/n).

Steps to Estimate Convergence Order:

1. After calculating errors for different node numbers (n), compute the error ratio between consecutive
n values (ni/ni−1) for i = 2 to the last data point.

2. Take the logarithm (base 2) of each error ratio.
3. Analyse the limiting behavior of these logarithmic error ratios as n tends to infinity. A constant value

(positive ideally) indicates convergence, and the value itself suggests the order (based on closeness to
1, 2, and so on).

Example 1. Consider the integral ∫ 1

0
p(x) f1(x)dx

where the function f1(x) = x3 + sin(2x), x ∈ [0, 1], and p(x) = 1.
We calculate numerically the integral of the function f (x). This is accomplished using the optimal quadra-

ture formula (1) in L(1)
2 (0, 1) space, and the optimal quadrature formula with derivative (5) in W(2,1)

2 (0, 1)
space. We have tabulated the absolute errors of the optimal quadrature formulas in Table 1. The absolute
error of the optimal quadrature formula in the space L(1)

2 (Err1), and the absolute error of the optimal
quadrature formula with the derivative in the space W(2,1)

2 (Err2)) are shown in the table. The interval [0; 1]
is divided into N segments. As mentioned above, the order of convergence of the quadrature formulas is
reflected in the last line of Table 1.
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N Err1 Err2
2 0.24864 · 10−2 0.99298 · 10−3

4 0.81164 · 10−3 0.60924 · 10−4

8 0.21452 · 10−3 0.37904 · 10−5

16 0.54352 · 10−4 0.23663 · 10−6

32 0.13633 · 10−4 0.14785 · 10−7

64 0.34111 · 10−5 0.92402 · 10−9

128 0.85294 · 10−6 0.57749 · 10−10

256 0.21324 · 10−6 0.36094 · 10−11

O(h2) O(h4)

Table 1: The absolute errors of the optimal quadrature formulas for numerical integration f1(x) function

Example 2. Consider the integral ∫ 1

0
p(x) f2(x)dx

where the function f2(x) = sin(5x), x ∈ [0, 1], and p(x) = ex−2.

N Err1 Err2
2 0.61990 · 10−3 0.86055 · 10−3

4 0.81842 · 10−3 0.71326 · 10−4

8 0.23726 · 10−3 0.46586 · 10−5

16 0.61293 · 10−4 0.29407 · 10−6

32 0.15443 · 10−4 0.18424 · 10−7

64 0.35682 · 10−5 0.11522 · 10−8

128 0.96750 · 10−6 0.72022 · 10−10

256 0.24191 · 10−6 0.45015 · 10−11

O(h2) O(h4)

Table 2: The absolute errors of the optimal quadrature formulas for numerical integration f2(x) function

In both examples above, increasing the number of nodes N + 1 leads to a corresponding decrease in
absolute errors.

Conclusion

In this article, the derivation and analysis of a weighted optimal quadrature formula in the Hilbert space
W(2,1)

2 (0, 1) were addressed. The quadrature formula is expressed as a linear combination of function values
and their first-order derivatives at equidistant nodes in the interval [0, 1]. The coefficients are determined
by minimizing the norm of the error functional in the dual space W(2,1)∗

2 (0, 1). The error functional represents
the difference between the integral of a function over the interval and the quadrature approximation. The
key results include explicit expressions for the coefficients and the norm of the error functional.

The optimization problem was formulated and solved, leading to a system of linear equations for the
coefficients. Analytical solutions of the system were obtained using the Sobolev method, providing an
explicit expression for the optimal coefficients. The convergence with the exact values of the integrals was
analyzed via numerical experiments.
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