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Abstract. We introduce some new generalized proximal interpolative contraction principles that produce
corresponding proximal interpolative contraction principles and proximal contraction principles as special
cases. We prove various best proximity point theorems using introduced generalized proximal interpolative
contraction principles. The obtained results improve and generalize many best proximity point theorems
published earlier in the literature. Some examples and applications are given to demonstrate the usefulness
of our results.

1. Introduction

The principles of interpolative contraction are made up of a product of distances whose exponents meet
certain requirements. Karapinar, a notable mathematician, coined the phrase interpolative contraction in
his article [1], which was published in 2018. The following is a definition of the interpolative contraction:

A self-mapping S , defined on a metric space (Ω, d), satisfying the following inequality

d(Sx,Sy) ≤ k
(
d(x, y)

)ν ,∀x, y ∈ Ω, (1)

is called an interpolative contraction, where ν ∈ (0, 1] and k ∈ [0, 1). It should be noted that S is a
Banach contraction for ν = 1. Recently, many classical and advanced contractions have been revisited via
interpolation (see [2–4] and references therein).

On the other hand, finding an element ℏ in R that is as close to S (ℏ) in G as possible, is of great
interest, since a non-self mapping need not have a fixed point. In other words, it is considered to find an
approximation solution ℏ in R such that the error d(ℏ,S(ℏ)) is smallest, where d is the distance function, if
the fixed point equation S (ℏ) =ℏ has no exact solution. In fact, best proximity point theorems look into the
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* Corresponding author: Muhammad Nazam
Email addresses: khaliljaved15@gmail.com (Khalil Javed), muhammad.nazam@aiou.edu.pk (Muhammad Nazam),

ozlem.acar@selcuk.edu.tr (Ozlem Acar), marshadzia@iiu.edu.pk (Muhammad Arshad)
ORCID iDs: https://orcid.org/0000-0002-2399-8593 (Khalil Javed), https://orcid.org/0000-0002-1274-1936

(Muhammad Nazam), https://orcid.org/0000-0001-6052-4357 (Ozlem Acar), https://orcid.org/0000-0003-3041-328X
(Muhammad Arshad)



K. Javed et al. / Filomat 39:8 (2025), 2817–2830 2818

possibility of such best proximity point for approximate solutions to the fixed point equation S (ℏ) =ℏ in the
absence of a precise solution.

(i) The proximal contraction, contrary to the contraction, is a non-self mapping. The fundamental
result on the existence of best proximity point of a proximal contraction was presented in [5]. (ii) Proinov
[6](2020) presented a most general version of the contraction principle and established a method to show
the existence of fixed points of this version of contraction (so called Proinov contraction). (iii) Karapinar
introduced the idea of interpolation contraction in his work [1] published in 2018. (iv) Altun and Taşdemir
[8] have utilized the interpolative proximal contraction to produce some best proximity point theorems.
Motivated by ideas and investigations (i)-(iv), this article seeks to provide best proximity point theorems
for contractive non-self mappings using interpolation, leading to the global optimal approximate solutions
to specific fixed point equations. Iterative strategies are also provided to find such ideal approximative
solutions in addition to proving the presence of best proximity points. Also, we extend the results appeared
in [6, 8] by introducing (Ψ,Φ)-interpolative proximal contraction, which generalize and establishing the
optimal proximity point theorems for them. Motivated by the contraction principles described in [6, 8]. The
interpolative proximal contraction introduced in [8] are generalized by the improved interpolative proximal
contraction. We look for various conditions on the functions to prove the presence of best proximity point of
improved proximal contraction, improved Ćirić-Reich-Rus interpolative proximal contraction, improved
Hardy Rogers interpolative proximal contraction. We also show non-trivial examples to demonstrate the
usefulness of our results.

2. Preliminaries

We proceed with the following notations that are used in the sequel.

d(R,G) = inf{d(ℏ, q) : ℏ ∈ R ∧ q ∈ G},
R0 = {ℏ ∈ R : d(ℏ, q) = d(R,G) for some q ∈ G},
G0 = {q ∈ G : d(ℏ, q) = d(R,G) for some ℏ ∈ R},

where (Ω, d) is a metric space and R,G ⊆ (Ω, d).

Definition 2.1. [9] Let R,G ⊆ (Ω, d). A mapping S : R→ G satisfying

d(ℏ1,S(q1)) = d (R,G)
d(ℏ2,S(q2)) = d (R,G)

}
⇒ d(ℏ1, ℏ2) ≤ kd (q1, q2) (2)

for all ℏ1, ℏ2, q1, q2 ∈ R such that ℏ1 , ℏ2 and k ∈ [0, 1) is calledproximal contraction-I.

Every PC-I can be modified to a Banach contraction.

Definition 2.2. [9] Let R,G ⊆ (Ω, d). A mapping S : R→G satisfying

d(ℏ1,S(q1)) = d (R,G)
d(ℏ2,S(q2)) = d (R,G)

}
⇒ d (Sℏ1,Sℏ2) ≤ kd (Sq1,Sq2) ,

for all ℏ1, ℏ2, q1, q2 ∈ R such that Sℏ1 , Sℏ2, and k ∈ [0, 1) is said to be a proximal contraction-II.

For a self-mapping S : R→ R to be a proximal contraction-II, it needs to satisfy the following inequality:

d
(
S2q1,S2q2

)
≤ kd (Sq1,Sq2) , for all q1, q2 ∈ R.

Remark 2.3. Every contraction is a proximal contraction-II but the converse is not true. Indeed, the mapping
S : [0, 1]→ [0, 1] defined by

S (ℏ) =


0 if ℏ is rational

1 otherwise

is a proximal contraction-II but not a contraction in (R, d).
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Definition 2.4. [8] Let R,G be any non-empty subsets of (Ω, d). We say that G is approximately compact with
respect to R, if every sequence {ℏn} in G satisfying the following condition

d (q, ℏn)→ d (q,G) ,

for some q ∈ R, has a convergent sub-sequence.

It is obvious that any set is roughly compact in relation to itself. R ∩ G is contained in both R0 and G 0
provided

R crosses G. Furthermore, the sets R0 and G0 are non-empty if R is compact and G is approximately
compact with respect to R.

Definition 2.5. [8] Let R,G ⊆ (Ω, d). An element ℏ∗ in R is called a best proximity point of the mapping S : R→G ,
if it satisfies the equation:

d (ℏ∗,Sℏ∗) = d (R,G) .

A best proximity point of the mapping S represents both the approximate solution of the equation
S(ℏ∗) = ℏ∗ and the optimal solution of the minimization problem:

min {d (ℏ∗,S(ℏ∗)) : ℏ∗ ∈ R} .

3. Improved proximal contractions

In this section, we define improved proximal contraction and show that it generalizes proximal con-
traction (2). We state and prove some existence of best proximity point theorems for improved proximal
contraction and improved interpolative proximal contractions in a complete metric space.

3.1. Improved proximal contraction-II:
Let R,G be subsets of (Ω, d). A mapping S : R→G satisfying

d (ℏ1,Sq1) = d (R,G)
d (ℏ2,Sq2) = d (R,G)

}
⇒ Ψ (d (Sℏ1,Sℏ2)) ≤ Φ (d (Sq1,Sq2)) , (3)

for all ℏ1, ℏ2, q1, q2 ∈ R such that ℏ1 , ℏ2, is called an improved proximal contraction-II, where the maps
Ψ,Φ : R+ → R.

The following example shows the significance of improved proximal contraction-II.

Example 3.1. Let d : R2
×R2

→ [0,∞) be defined by

d((ℏ, q), (u, v)) = |ℏ − u| + |q − v| for all (ℏ, y), (u, v) ∈ X.

Then (Ω, d) is a metric space. Let R,G be the subsets of Ω defined by

R = {(0, q); q ∈ R}, G = {(1, q); q ∈ R}, then d(R,G) = 1.

Define the functionsΨ,Φ : R+ → R by

Ψ(t) = 2t and Φ(t) = t, t ∈ R+.

Define the mapping S : R →G by S((0, r)) = (1, r
4 ) for all (0, r) ∈ R. We show that S is an improved proximal

contraction-II. For ℏ1 = (0, ℏ), ℏ2 = (0,u) and q1 = (0, 4ℏ), q2 = (0, 4u) ∈ R we have,

d(ℏ1,Sq1) = d((0, ℏ),S(0, 4ℏ)) = 1 = d(R,G),
d(ℏ2,Sq2) = d((0,u),S(0, 4u)) = 1 = d(R,G).
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This implies that

Ψ (d (Sℏ1,Sℏ2)) ≤ Φ (d (Sq1,Sq2)) ,

This shows that S is an improved proximal contraction-II. However, the following calculations show that it is not a
proximal contraction-II. We know that

d(ℏ1,Sq1) = 1 = d(R,G)
d(ℏ2,Sq2) = 1 = d(R,G).

If there exists k ∈ (0, 1) such that

d (Sℏ1,Sℏ2) ≤ kd (Sq1,Sq2) ,

then, k = 1
6 , a contradiction. Hence, S is not a proximal contraction-II.

The following lemmas are integral part of this paper and have an impact on further investigations.

Lemma 3.2. [6] Let {ln} be a sequence in (Ω, d) verifying limn→∞ d(ln, ln+1) = 0. If the seqence {ln} is not cauchy,
then there are sub-sequences {lnk }, {lmk } and e > 0 such that

lim
k→∞

d(lnk+1, lmk+1) = ϵ + some term(s). (4)

lim
k→∞

d(lnk , lmk ) = lim
k→∞

d(lnk+1, lmk ) = lim
k→∞

d(lnk , lmk+1) = ϵ. (5)

Lemma 3.3. [6] LetΨ : (0,∞)→ R be a function. Then the statements (i)-(iii) are equivalent.

(i) infz>εΨ (z) > −∞ for every ε > 0.

(ii) limz→ε+ infΨ (z) > −∞ for every ε > 0.

(iii) limn→∞Ψ (zn) = −∞ implies that limn→∞ zn = 0.

Lemma 3.4. Let {ℏn} be a sequence in (Ω, d) obeying the equation limn→∞ d(ℏn, ℏn+1) = 0. Suppose that the mapping
S : R→G satisfies (3) and the mapsΨ,Φ : (0,∞)→ R such that

lim sup
t→ϵ+
Φ (t)< Ψ(ϵ+) (6)

for any ϵ > 0. Then {ℏn} is a Cauchy sequence.

Proof. First, we consider {ℏn} is not cauchy, then by Lemma 3.2, there exist two subsequence {ℏnk }, {ℏmk } of
{ℏn} and ϵ > 0 so that (4) and (5) hold. By (4), we get that d(ℏnk+1, ℏmk+1) > ϵ and

d(ℏnk+1,S(ℏmk )) = d(R,G),
d(ℏmk+1,S(ℏnk )) = d(R,G), for all k ≥ 1.

Thus, by (3), we have

Ψ(d(ℏnk+1, ℏmk+1)) ≤ Φ(d(ℏnk , ℏmk )), for any k ≥ 1. (7)

Putting ck = d(ℏnk+1, ℏmk+1) and ek = d(ℏnk , ℏmk ) in (7), we have

Ψ(ck) ≤ Φ(ek), for any k ≥ 1. (8)

By (4) and (5), limk→∞ ck = ϵ+ some term(s) and limk→∞ ek = ϵ. By (8), we get

Ψ(ϵ+) = lim
k→∞
Ψ(ck) ≤ lim sup

k→∞
Φ(ek) ≤ lim sup

p→ϵ
Φ(p). (9)

This is a contradiction to the assumption (6). Consequently, {ℏn} is a cauchy sequence in G .
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Now, we are in a position to state and prove our first main theorem.

Theorem 3.5. Let R,G be non-empty, closed subsets of complete metric space (Ω, d) such that R is approximately
compact with respect to G and S : R →G be a continuous improved proximal contraction-II verifying conditions
(i)-(ii):

(i) Ψ is non-decreasing function and lim supt→ϵ+Φ (t) < Ψ(ϵ+) for any ϵ > 0,

(ii) R0 is non-empty subset of R obeying S(R0) ⊆G 0.

Then the mapping S admits a best proximity point.

Proof. Consider ℏ0 ∈ R0. Since S(ℏ0) ∈ S(R0) ⊆G 0, there exists ℏ1 ∈ R0 satisfying d(ℏ1,S(ℏ0)) = d(R,G ). Also,
we have S(ℏ1) ∈ S(R0) ⊆G 0, there exists ℏ2 ∈ R0 so that d(ℏ2,S(ℏ1)) = d(R,G ).We build a series by continuing
this approach such that {ℏn} in R0 satisfies the following equation:

d(ℏn,S(ℏn−1)) = d(R,G), for all n ∈N. (10)

If there exists n ∈N such that ℏn = ℏn+1, then the point ℏn is a best proximity point of the mapping S. On the
other hand, if ℏn−1 , ℏn for all n ∈N, then we have

d(ℏn,S(ℏn−1)) = d(R,G),
d(ℏn+1,S(ℏn)) = d(R,G), for all n ≥ 1.

Thus, by (3), we have

Ψ(d(Sℏn,Sℏn+1)) ≤ Φ(d(Sℏn−1,Sℏn)).

Let d(Sℏn,Sℏn+1) = dn. Since, Φ (t) < Ψ (t) for all t > 0,we have

Ψ(dn) ≤ Φ(dn−1) < Ψ(dn−1). (11)

Given that Ψ is non-decreasing, by (11), we have dn < dn−1 ∀ n ∈ N. Thus, it converges to some element
d ≥ 0. We claim that d = 0. If d > 0, by (11), we obtain the following:

Ψ (d+) = lim
n→∞
Ψ (dn) ≤ lim

n→∞
Φ (dn−1) ≤ lim

t→d+
supΦ (t) .

This contradicts (i), hence, d = 0 and limn→∞ d(Sℏn,Sℏn+1) = 0. By using (i) and Lemma 3.4, we conclude
that {S(ℏn)} is a cauchy sequence. Since G is a closed subset of complete metric space (Ω, d), there exists q∗ ∈G
such that limn→∞ d(Sℏn, q∗) = 0. Moreover,

d(q∗,R) ≤ d(q∗, ℏn)
≤ d(q∗,S(ℏn−1)) + d(S(ℏn−1), ℏn)
≤ d(q∗,S(ℏn−1)) + d(R,G)
≤ d(q∗,S(ℏn−1)) + d(q∗,R).

Thus, d (q∗, ℏn) → d(q∗,R) as n → ∞. Since R is approximately compact with respect to G , there exists a
subsequence {(ℏnk )} of {(ℏn)} converging to ℏ∗ ∈ R(say). We infer the following equation:

d(ℏ∗, q∗) = d(ℏnk ,S(ℏnk−1)) = d(R,G). (12)

Due to the continuity of S, we have S(ℏnk−1)→ S(ℏ∗). Thus,

d(ℏ∗,S(ℏ∗)) = d(R,G).
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For improved proximal contraction-I, we have the following theorem.

Theorem 3.6. Let R,G be non-empty, closed subsets of complete metric space (Ω, d) such that R is approximately
compact with respect to G and S : R→G be a improved proximal contraction-I verifying conditions (i)-(ii):

(i) Ψ is non-decreasing function and lim supt→ϵ+Φ (t) < Ψ(ϵ+) for any ϵ > 0,

(ii) R0 is non-empty subset of R obeying S(R0) ⊆G0.

Then the mapping S has a best proximity point.

We omit the proof of Theorem 3.6, as it follows from the previous one. The following theorem is second
main theorem stating different conditions for the existence of a best proximity point.

Theorem 3.7. Let R,G be non-empty, closed subsets of complete metric space (Ω, d) with the property that “R is
approximately compact with respect to G ” and S : R →G be a continuous improved PC-II verifying the conditions
(i)-(ii):

(i) Ψ is non-decreasing and if {Ψ(tn)} and {Φ(tn)} are convergent sequence satisfying limn→∞Ψ(tn) = limn→∞Φ(tn),
then limn→∞ tn = 0,

(ii) R0 is non-empty subset of R obeying S(R0) ⊆G 0.

Then the mapping S has a best proximity point.

Proof. Following the procedure used in the proof of Theorem 3.5, we have

Ψ(dn) ≤ Φ(dn−1) < Ψ(dn−1). (13)

By (13), we have {Ψ (dn)} is strictly decreasing sequence. We have two cases here; either the sequence
{Ψ (dn)} is bounded below or not. If {Ψ (wn)} is not bounded below, then

inf
wn>ε
Ψ (dn) > −∞ for every ε > 0,n ∈N.

From, Lemma 3.3, then dn → 0 as n → ∞. Secondly, if sequence {Ψ(dn)} is bounded below, then, it is a
convergent sequence. By (13), the sequence {Φ(dn)} also converges, moreover, both have same limit. By (i),
we have limn→∞ dn = 0, or limn→∞ d (Sℏn,Sℏn+1) = 0, for any sequence {ℏn} in R. Now, as in the proof of
Theorem 3.5, we have

d(ℏ∗,S(ℏ∗)) = d(R,G).

This shows that the point ℏ∗ is a best proximity point of the mapping S.

3.2. Improved Ćirić-Reich-Rus Interpolative proximal contraction-II

Let (Ω, d) be a complete metric space, and R,G be a pair of non-empty subsets of Ω. LetΨ,Φ : (0,∞)→ R
be two functions. A mapping S : R →G is said to be an improved Ćirić-Reich-Rus interpolative PC-II if
there exist α, β ∈ (0, 1); α + β < 1 satisfying

Ψ (d (Sℏ1,Sℏ2)) ≤ Φ
(

(d (Sq1,Sq2))α (d (Sq1,Sℏ1))β

(d (Sq2,Sℏ2))1−α−β

)
, (14)

whenever d (ℏ1,Sq1) = d (R,G) and d (ℏ2,Sq2) = d (R,G) for all distinct ℏ1, ℏ2,q1, q2 ∈ R.
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Example 3.8. Let d : R2
×R2

→ R be the Euclidean metric on R2 and R,G be the subsets of R2 defined by

R =
{
(ℏ, q) : q =

√

9 − ℏ2
}

; G =
{
(ℏ, v) : q =

√

16 − ℏ2
}

then d (R,G) = 1.

Define the functionsΨ,Φ : R+ → R and S : R→G by

Φ(z) =
√
z and Ψ(z) = z, for all z ∈ R+.

S(ζ) = S (ℏ, v) =
{ (

ℏ
2 ,
q

2

)
for ℏ ≥ 0,

(−1, 0) for ℏ < 0,
for all

(
ℏ, y

)
∈ R.

The following information shows that S generalizes the interpolative Ćirić-Reich-Rus type proximal contraction [8].
Indeed, for ℏ1 = (1, 0) , ℏ2 = (1, 2) , q1 = (2, 2) , q2 = (0, 4), we have d (ℏ1,Sq1) = 1 = d(R,G ), d (ℏ2,Sq2) = 1 = d(R,G
), and for α = 1

2 , β =
1
3 ,

Ψ (d (S (1, 0) ,S (1, 2))) ≤ Φ

 (d (S (0, 4) ,S (2, 2)))
1
2 (d (S (2, 2) ,S (1, 0)))

1
3

(d (S (0, 4) ,S (1, 2)))1− 1
2−

1
3

 ,
Ψ (1) ≤ Φ (1.2573)⇒ 1 ≤ 1.1213.

Thus,

Ψ (d (Sℏ1,Sℏ2)) ≤ Φ
(

(d (Sq1,Sq2))α (d (Sq1,Sℏ1))β

(d (Sq2,Sℏ2))1−α−β

)
.

This shows that S is an improved interpolative Ćirić-Reich-Rus PC-II. However, for ℏ1 = (1, 0) , ℏ2 = (1, 2) , q1 =
(2, 2) , q2 = (0, 4), if there exists some k satisfying the following inequality:

d (Sℏ1,Sℏ2) ≤ k (d (Sq1,Sq2))α (d (Sq1,Sℏ1))β (d (Sq2,Sℏ2))1−α−β

d (S (1, 0) ,S (1, 2)) ≤ k (d (S (0, 4) ,S (2, 2)))
1
2 (d (S (2, 2) ,S (1, 0)))

1
3

(d (S (0, 4) ,S (1, 2)))1− 1
2−

1
3 .

Then, k ∈
[

1
1.2573 ,∞

)
, a contradiction. Hence, S is not interpolative Ćirić-Reich-Rus PC-II. We note that for ℏ ≥ 0,

there is ζ = (ℏ, v) ∈ R such that d (ζ,S (ζ)) = d(R,G ) = 1.

The criteria for the existence of best proximity point of the improved Ćirić-Reich-Rus interpolative PC-II
are stated in the following two theorems.

Theorem 3.9. Let R,G ⊆ (Ω, d) with the property that “R is approximately compact with respect to G ” and (Ω, d) be
a complete metric space. If S : R →G is a continuous improved Ćirić-Reich-Rus type interpolative PC-II satisfying
the following assumptions:

(i) Ψ is non-decreasing function and lim supt→ϵ+Φ (t) < Ψ(ϵ+) for any ϵ > 0.

(ii) R0 is non-empty subset of R such that S(R0) ⊆G 0.

Then S has a best proximity point.

Proof. Consider an arbitrary initial guess ℏ0 ∈ R0. Since S(ℏ0) ∈ S(R0) ⊆G 0, there exists ℏ1 ∈ R0 such that

d(ℏ1,S(ℏ0)) = d(R,GG).

Also, S(ℏ1) ∈ S(R0) ⊆G 0, there exists ℏ2 ∈ R0 such that

d(ℏ2,S(ℏ1)) = d(R,G).
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We build a series by continuing this approach such that {ℏn} in R0 satisfies the following equation:

d(ℏn+1,S(ℏn)) = d(R,G), for all n ∈N. (15)

Now, if there exists n ∈ N such that ℏn = ℏn+1, then the point ℏn is a best proximity point of the mapping S.
Assume that ℏn , ℏn+1 for all n ∈N and using (15), we have

d(ℏn,S(ℏn−1)) = d(R,G),

and

d(ℏn+1,S(ℏn)) = d(R,G), for all n ≥ 1.

By (14), we have

Ψ(d(Sℏn,Sℏn+1)) ≤ Φ
(
(d (Sℏn−1,Sℏn))α (d (Sℏn−1,Sℏn))β (d (Sℏn,Sℏn+1))1−α−β

)
, (16)

for all distinct ℏn−1, ℏn, ℏn+1 ∈ R. Given that Φ(t) < Ψ(t) for all t > 0, by (16), we have

Ψ(d(Sℏn,Sℏn+1)) < Ψ
(
(d (Sℏn−1,Sℏn))α (d (Sℏn−1,Sℏn))β (d (Sℏn,Sℏn+1))1−α−β

)
.

SinceΨ is a non-decreasing function, we have

d(Sℏn,Sℏn+1) <
(
d
(
Sℏn−1,Sℏn

))α+β (d(Sℏn,Sℏn+1))1−α−β.

This implies that

(d(Sℏn,Sℏn+1))α+β < (d (Sℏn−1,Sℏn))α+β .

This shows that the sequence {d(Sℏn,Sℏn+1) = dn} converges to some element d ≥ 0. We claim that d = 0. If
d > 0, by (16), we obtain the following:

Ψ (d+) = lim
n→∞
Ψ (dn) ≤ lim

n→∞
Φ

(
(dn−1)α+β(dn)1−α−β

)
≤ lim
z→d+

supΦ (z) .

This contradicts (i), hence, d = 0 and limn→∞ d(Sℏn,Sℏn+1) = 0. By using (i) and Lemma 3.4, we conclude
that {Sℏn} is a cauchy sequence. Since G is a closed subset of complete metric space (Ω, d), there exists q∗ ∈G ,
such that limn→∞ d(Sℏn, q∗) = 0. Now, we can obtain the desired result by following the reasoning used in
the proof of Theorem 3.5.

Theorem 3.10. Let R,G ⊆ (Ω, d) with the property that “R is approximately compact with repect to G ” and (Ω, d)
be a complete metric space. If S : R→G is a continuous improved Ćirić-Reich-Rus type interpolative PC-II verifying
(i)-(ii)

(i) Ψ is non-decreasing and if {Ψ(zn)} and {Φ(zn)} are convergent sequences satisfying limn→∞Ψ(zn) = limn→∞Φ(zn),
then limn→∞ zn = 0,

(ii) R0 is non-void subset of R obeying S(R0) ⊆G0.

Then the mapping S has a best proximity point.

Proof. Following the procedure used in the proof of Theorem 3.9, we have

Ψ (dn) ≤ Φ
(
(dn−1)α+β (dn)1−α−β

)
< Ψ

(
(dn−1)α+β (dn)1−α−β

)
. (17)
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By (17), we infer that {Ψ (dn)} is strictly decreasing sequence. We have two cases here; either the sequence
{Ψ (ωn)} is bounded below or not. If {Ψ (dn)} is not bounded below, then

inf
dn>ε
Ψ (dn) > −∞ for every ε > 0, n ∈N.

It follows by Lemma 3.3, that dn → 0 as n→ ∞. Secondly, if the sequence {Ψ (dn)} is bounded below, then,
it is convergent sequence. By (17) the sequence {Φ (dn)} also converges, moreover, both have same limit.
By (i) , we have limn→∞ dn = 0 for any sequence {ℏn} in R. The proof of Theorem 3.9 leads to the rest of the
proof.

Note that, if S is a self-mapping defined on R, then best proximity point is a fixed point of S.

Remark 3.11. The following observations indicate the generality of improved interpolative Ćirić-Reich-Rus type
proximal contraction for the specific definitions of the mappingsΨ,Φ.

1. If Φ(ℓ) = Ψ(ℓ) − τ for all ℓ ∈ (0,∞) in (14), then L is an interpolative Ćirić-Reich-Rus type F-proximal
contraction.

2. If Φ(ℓ) = Ψ(ℓ) − τ(ℓ) for all ℓ ∈ (0,∞) in (14), then L is an interpolative Ćirić-Reich-Rus type (τ,FT)
proximal-contraction.

3. IfΨ(ℓ) = ℓ and Φ(s) = λs for all ℓ, s ∈ (0,∞) in (14), then we obtain the contraction introduced in [8].

4. For ν = 0, we obtain improved interpolative Kannan type proximal contraction from (14) .

3.3. Improved Hardy Rogers Interpolative PC-II:
Let R,G ⊆ (Ω, d). A mapping S : R→G satisfying

Ψ (d (Sℏ1,Sℏ2)) ≤ Φ

 d (Sq1,Sq2)α d (Sq1,Sℏ1)β d (Sv2,Sℏ2)γ(
1
2 (d (Sq1,Sℏ2) + d (Sv2,Sℏ1))

)1−α−β−γ

 , (18)

whenever, d (ℏ1,Sq1) = d (R,G); d
(
ℏ2,Sq2

)
= d (R,G), is called an improved Hardy Rogers interpolative

PC-II, where α, β, γ ∈ (0, 1) such that α + β + γ < 1, ℏ1, ℏ2, q1, q2 ∈ R andΨ,Φ : R+ → R.
The following example shows that improved Hardy Rogers type interpolative PC-II generalizes the Hardy
Rogers type interpolative PC-II appeared in [8].

Example 3.12. Let d : R2
→ R be a usual metric and R,G be subsets of Ω defined as

R = {1, 2, 3, 4, 5, 6, 7},G = {0, 1, 2, 3, 4, 5} then d (R,G) = 0.

Define the functionsΨ,Φ : R+ → R and S : R→G by

Ψ (ℏ) =
{
ℏ + 1 for ℏ = 2,
ℏ + 10 for ℏ , 2, Φ (ℏ) =

{
ℏ
2 for ℏ = 2,
ℏ + 5 otherwise,

and S (ℏ) = ℏ − 1 for all ℏ ∈ R. We show that S is an improved interpolative Hardy Rogers PC-II. Indeed,
for ℏ1 = 2, ℏ2 = 4, y1 = 3, y2 = 5, and α = 0.2, β = 0.3, γ = 0.4 we have d (ℏ1,Sq1) = 0 = d (R,G), d
(ℏ2,Sq2) = 0 = d (R,G) and

Ψ (2) ≤ Φ
(

(2)α (1)β (1)γ
(

1
2 (3 + 1)

)1−α−β−γ
)

Ψ (2) ≤ Φ
(
(2)0.2 (1)0.3 (1)0.4 (2)0.1

)
= Φ (0.7764)⇒ 3 < 5.7764.
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Hence,

Ψ (d (Sℏ1,Sℏ2)) ≤ Φ

 d (Sq1,Sq2)α d (Sq1,Sℏ1)β d (Sq2,Sℏ2)γ(
1
2 (d (Sq1,Sℏ2) + d (Sq2,Sℏ1))

)1−α−β−γ

 .
This shows that S is an improved interpolative Hardy Rogers PC-II. However, the following calculation shows that it
is not an interpolative Hardy Rogers PC-II.

Suppose there is some k satisfying the following inequality:

d (Sℏ1,Sℏ2) ≤ k

 d (Sq1,Sq2)α d (Sq1,Sℏ1)β d (Sq2,Sℏ2)γ(
1
2 (d (Sq1,Sℏ2) + d (Sq2,Sℏ1))

)1−α−β−γ

 .
Then, k ∈

[
2

0.7764 ,∞
)
, which is a contradiction to the assumption that k ∈ (0, 1). Hence, S is not an interpolative

Hardy Rogers PC-II.

The criteria for the existence of the best proximity point of improved interpolative Hardy Rogers
proximal contraction S are stated in the following two theorems. The proofs are very identical to the proofs
of Theorems 3.7 and 3.9. We only write the distinct parts of the proof.

Theorem 3.13. Let S : R →G be a continuous improved interpolative Hardy Rogers PC-II defined on a complete
metric space (Ω, d) verifying conditions (i)-(ii), where R,G are non-empty, closed subsets of Ω with the property
that R is approximately compact with respect to G .

(i) Ψ is a non-decreasing function and limz→ε+Φ (z) < Ψ (ε+) for any ε > 0,

(ii) R0 is a non-void subset of R such that S (R0) ⊆G 0.

Then the mapping S has a best proximity point.

Proof. Starting with the initial input as in the proof of Theorem 3.7, we have

d(ℏn,S(ℏn−1)) = d(R,G),

d(ℏn+1,S(ℏn)) = d(R,G), for all n ≥ 1.

Thus by (18) we can write

Ψ(d(Sℏn,Sℏn+1)) ≤ Φ

 (
d
(
Sℏn−1,Sℏn

))α (d(Sℏn−1,Sℏn))β (d (Sℏn,Sℏn+1))γ(
1
2 (d (Sℏn−1,Sℏn+1) + d (Sℏn,Sℏn))

)1−α−β−γ


Ψ (d (Sℏn,Sℏn+1)) ≤ Φ

 (d (Sℏn−1,Sℏn))α (d (Sℏn−1,Sℏn))β (d (Sℏn,Sℏn+1))γ(
1
2 d (Sℏn−1,Sℏn+1)

)1−α−β−γ


Ψ (d (Sℏn,Sℏn+1)) ≤ Φ

 (
d
(
Sℏn−1,Sℏn

))α (d(Sℏn−1,Sℏn))β (d (Sℏn,Sℏn+1))γ(
1
2 (d (Sℏn−1,Sℏn) + d (Sℏn,Sℏn+1))

)1−α−β−γ


Ψ (d (Sℏn,Sℏn+1)) ≤ Φ

 (d (Sℏn−1,Sℏn))α+β (d (Sℏn,Sℏn+1))γ(
1
2 (d (Sℏn−1,Sℏn) + d (Sℏn,Sℏn+1))

)1−α−β−γ

 ,
for all distinctℏn−1, ℏn, ℏn+1 ∈ R. Let d(Sℏn,Sℏn+1) = ωn. Since Φ (t) < Ψ (t) for all t > 0,we get

Ψ (dn) < Ψ
(
(dn−1)α+β (dn)γ

(1
2

(dn−1 + dn)
)1−α−β−γ)

. (19)
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Suppose that dn−1 < dn for some n ≥ 1 and by monotonicity ofΨ, we have

(dn)α+β < (dn)α+β ,

which is a false statement. Consequently, we have dn < dn−1 for all n ∈ N. This implies dn < dn−1 for all
n ∈N. Thus, it converges to some element d ≥ 0. Suppose d > 0, then

Ψ(d+) = lim
n→∞
Ψ (dn) ≤ lim

n→∞
Φ

(
(dn−1)α+β (dn)γ

(1
2

(dn + dn−1)
)1−α−β−γ)

≤ lim
t→ω+

Φ(t).

This contradicts (i), hence, d = 0 and limn→∞ d(Sℏn,Sℏn+1) = 0. We omit the remaining details as they are
similar to proof of Theorem 3.7.

Theorem 3.14. Every continuous improved interpolative Hardy Rogers PC-II S : R →G defined on complete
metric space (Ω, d) and verifying conditions (i)-(ii) admits a best proximity point provided that R,G are non-
empty, closed subsets of Ω with the property that R is approximately compact with respect to G .

(i) Ψ is non-decreasing and {Ψ (zn)} and {Φ (zn)} are convergent sequences obeying limn→∞Ψ (zn) = limn→∞Φ (zn),
then limn→∞ zn = 0.

(ii) R0 is non-void subset of R obeying S (R0) ⊆G0.

Proof. This proof follows from the proof of Theorem 3.9 and Theorem 3.10.

Remark 3.15. If S : R → R (G = R), then the best proximity point is a fixed point and Theorem 3.5, Theorem 3.7,
Theorem 3.9, Theorem 3.10, Theorem 3.13 and Theorem 3.14 are fixed point theorems.

4. Application to integral equations

The theory of integral equations may be traced back at least to Fourier’s discovery of the theorem
concerning integrals that bears his name; indeed, while not Fourier’s point of view, this theorem can be
seen as a statement of the solution of a certain first-order integral equation. However, Abel and Liouville,
as well as others after them, began to study exceptional integral equations in a fully conscious manner,
and many of them recognised the critical role the theory was destined to play. We are intend to apply
Theorem 3.6 (for R ⊆G ) to show the existence of the solution to the following nonlinear Volterra type
integral equations:

f (k) =

k∫
0

Hς(k, h, f ) dh, (20)

for all k ∈ [0, 1], ς ∈ Θ, and Hς is a function defined on [0, 1]2
× C([0, 1],R+) to R.We show the existence to

the solution of (20). For f ∈ C([0, 1],R+), the norm as: ∥ f ∥τ = sup
k∈[0,1]

∣∣∣ f (k)
∣∣∣ e−τk, τ > 0. Define

ητ( f ,κ) =

 sup
k∈[0,1]

∣∣∣ f (k) − κ(k)
∣∣∣ e−τk = ∥ f − κ∥τ

for all f ,κ ∈ C([0, 1],R+),with these settings, (C([0, 1],R+), ητ) represents a complete metric space.
Now, we show the following theorem to clarify that the solution of integral equation exists.
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Theorem 4.1. Suppose that the mapping Hς : [0, 1] × [0, 1] × C([0, 1],R+)→ R is a continuous mapping:

∣∣∣Hς(k, h, f ) −Hς(k, h, c)
∣∣∣ ≤ τητ( f , c)
τητ( f , c) + 1

eτh (21)

for every h, k ∈ [0, 1] and f , c ∈ C([0, 1],R). Then, integral equation (20) has at most one solution in C([0, 1],R+) or
equivalently the associated operator Lς : R→ R defined by

(Lς f )(k) =

k∫
0

Hς(k, h, f ) dh, (22)

admits a best proximity point.

Proof. By (21) and (22), we have the following information.

∣∣∣Lς f − Lςκ
∣∣∣ = k∫

0

∣∣∣Hς(k, h, f ) −Hς(k, h,κ)
∣∣∣ dh,

≤

k∫
0

τητ( f ,κ)
τητ( f ,κ) + 1

eτhdh

≤
τητ( f ,κ)
τητ( f ,κ) + 1

k∫
0

eτhdh

≤
ητ( f ,κ)

τητ( f ,κ) + 1
eτk.

This implies

∣∣∣Lς f − Lςκ
∣∣∣ e−τk ≤ ητ( f ,κ)

τητ( f ,κ) + 1

∥∥∥Lς f − Lςκ
∥∥∥
τ
≤

ητ( f ,κ)
τητ( f ,κ) + 1

τητ( f ,κ) + 1
ητ( f ,κ)

≤
1∥∥∥Lς f − Lςκ

∥∥∥
τ

τ +
1

ητ( f ,κ)
≤

1∥∥∥Lς f − Lςκ
∥∥∥
τ

which further implies

τ −
1∥∥∥Lς f − Lςκ

∥∥∥
τ

≤
−1

ητ( f ,κ)
.

So all the conditions of Theorem 3.6 are satisfied for Ψ(κ) = −1
κ ; κ > 0 and Φ(κ) = Ψ(κ) − τ. Hence, the

integral equation (20) admits a solution.
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5. Application to functional equations

Equations in which the unknowns are functions rather than traditional variables are known as functional
equations. The methods for solving functional equations, on the other hand, can differ significantly from
those for isolating a classical variable. Here, we present an application of Theorem 3.6 (for R ⊆G ) to show
the existence of the solution to a functional equation in dynamical programming.

Let Γ be a Banach space, £,℧ ⊆ Γ and

φ : £ ×℧→ £
ℏ, y : £ ×℧→ R
C,K : £ ×℧ ×R→ R.

We assume that £ and℧ show only for the decisions spaces. The problem related to dynamical programming
is to find the solution of the given equations:

p(α) = sup
α∈℧
{ℏ(α, θ) + C(α, θ, p(φ(α, θ)))}, (23)

for α ∈ £.We want to show the equations (23) have unique solution. Suppose R(£) represents the class of
all positive valued functions on £. Consider,

ητ(q,w) = ∥q − w∥∞ = sup
α∈℧
|q (α) − w (α)| (24)

for all q,w ∈ R(£), and (R(£), η) becomes a complete metric space. Assume that
(Ĉ1): C,K, ℏ, and y are bounded;
(Ĉ2): for α ∈ £, q ∈ R(£), Υς : R(£)→ R(£), take

Cq(α) = sup
θ∈℧
{ℏ(α, θ) + C(α, θ, q(φ(α, θ)))}. (25)

Furthermore, for each (α, θ) ∈ £ ×℧, q,w ∈ R(£), t ∈ £ and τ > 0,

|C(α, θ, q(t)) − C(α, θ,w(t)| ≤ ητ(q,w)e−τ. (26)

Theorem 5.1. Suppose that (Ĉ1), (Ĉ2) and (26) hold. Then, the equation (23) admits a unique bounded solution in
R(£).

Proof. Take any c > 0. By (25) and (26), there are q1 ∈ R(£), and θ1 ∈ ℧ such that

(Υςq1) < ℏ(α, θ1) + C(α, θ1, q1(φ(α, θ1))) + c, (27)

Using the definition of supremum, we get

(Υςq1) ≥ ℏ(α, θ2) + C(α, θ2, q1(φ(α, θ2))). (28)

Then, from (26), (27) and (28), we have

(Υςq1)(α) − (Υςq2)(α)
≤ C(α, θ1, q1(φ(α, θ1))) − C(α, θ1, q2(φ(α, θ1))) + c

≤

∣∣∣C(α, θ1, q1(φ(α, θ1))) − C(α, θ1, q2(φ(α, θ1)))
∣∣∣ + c

≤ ητ(q,w)e−τ + c.

Since, c > 0 is arbitrary, we obtain∣∣∣Υςq1(α) − Υςq2(α)
∣∣∣ ≤ ητ(q,w)e−τ

eτ
∣∣∣Υςq1(α) − Υςq2(α)

∣∣∣ ≤ ητ(q,w).
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It implies that,

τ + ln
∣∣∣Υςq1(α) − Υςq2(α)

∣∣∣ ≤ ln(ητ(q,w)).

Thus, the requirements of Theorem 3.6 are hold for Ψ(κ) = ln(κ); κ > 0 and Φ(κ) = Ψ(κ) − τ. Hence, C
admits a best proximity point q∗ ∈ R(£).

6. Conclusion and future work

The theorems provided here establish a broad criterion for the existence of a best proximity point of
improved interpolative PC-II. The results will extend earlier results of Basha [5], Altun and Taşdemir [8],
Beg et al. [10], Espinola et al. [11], Suzuki [13] and others. Future work: The study presented in this
paper can be revisited to demonstrate the existence of PPF-dependent optimum proximity sites of non-self
mappings (for more information, see [12] and references).
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[2] E. Karapinar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contrraction via simulation functions, Analele Universitatii Ovidius
27, 137-152(2019).

[3] E. Karapinar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers Type contraction, Symmetry 2019, 11, 8.
[4] M. Nazam, H. Aydi, A. Hussain, Generalized interpolative contraction and an Application, Journal of Mathematics, 2021, Article ID

6461477, (2021).
[5] S.S. Basha, Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim. 31(5), 569-576 (2010).
[6] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl. (2020) 22:21,

https://doi.org/10.1007/s11784-020-0756-1.
[7] E. Karapinar, B. Samet, Generalized (α,Ψ)-contractive type mappings and related fixed point theorems with applications,

Abstr. Appl. Anal. 2012(2012), Article ID 793486.
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