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Milica Dordevića,b,∗, Jasmina Dordevića
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Abstract. In this paper we propose stochastic SIRS model which describes propagation of two independent
computer viruses. Randomness is introduced in the model by perturbing transmission rates via Brownian
motion and Poisson jump. For this model, we theoretically prove that its solution is unique, global and
positive. Furthermore, we derive conditions under which viruses become extinct from population. Also,
conditions for stochastic strong persistence in mean of viruses will be obtained. In the end, we will present
numerical simulations to illustrate our theoretical results using Euler-Maruyama method.

1. Introduction

1.1. About computer viruses
The first computer viruses were programs that copied themselves. Like biological viruses, computer

viruses spread by taking advantage of the existing environment. Some computer viruses need a ”host”
program and they replicate themselves by attaching their program instructions to an ordinary host program
or document, such that the virus instructions are executed during the execution of the host program. On
the other hand, computer worms do not require host program and can carry out attacks independently.

The term ”virus” for computers first appeared in 1988, but computer programs that are denoted by the
term ”virus” in fact existed many years before. The first computer virus, Creeper System, was created in
1971 (for more details, see [36], page 19). Fred Cohen was the first author who gave a precise definition of
what computer viruses are in his doctoral thesis [8] which was published in 1986. This definition is now
widely accepted and used.

The beginning of 21st century marked a turning point for development of computer viruses. Computer
viruses constructed after 2000s are more sophisticated than ones before. Previous paragraphs were about
development of computer viruses up to 2000s. Our mathematical models and discussion will be about
computer viruses which are constructed after 2000s because they are the most representative nowadays.
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Email addresses: milica.djordjevic2@pmf.edu.rs, milicadjordjevic48@gmail.com (Milica Dordević),
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Definition 1.1. ([12], Definition 17, page 41)
A virus can be described by a sequence of symbols which is able, when interpreted in a suitable environment (a
machine), to modify other sequences of symbols in that environment by including a, possibly evolved, copy of itself.

Definition 1.2. ([12], Definition 36, page 83)
A computer infection program (Malicious software or malware) is a simple or self-replicating program, which discretely
installs itself in a data processing system, without user’s knowledge or consent, with a view to either endangering
data confidentiality, data integrity and system availability or making sure that users be framed for computer crime.

Malware is a term for any malicious software written specifically to infect and harm the host system or
its user. A computer virus is just one type of malware that, when executed, tries to replicate itself in other
executable codes. When it succeeds, the code is said to be infected. The infected code, when activated, can
infect the new code in return and thus the infection grows. This self-replication into existing executable
code is the key defining characteristic of a virus.

Computer viruses spread by attaching themselves to legitimate files and programs and are distributed
through infected websites, flash drives, emails, etc. A victim activates a virus by opening the infected
application or file. Once activated, a virus may delete or encrypt files, modify applications, disable system
functions, etc.

The computer virus has three parts ([35], page 205) (i.e. its code has three parts):
1. Infection mechanism - Finds and infects new files i.e. it is how virus spreads. Virus spreads by modifying

other code to contain a (possibly altered) copy of the virus. The exact means through which a virus
spreads is referred as its infection vector. This doesn’t have to be unique - a virus that infects in multiple
ways (or several types of target at the same time) is called multipartite.

2. Payload - Malicious code to execute. It is body of the virus that executes the malicious activity. The
payload may involve damage, either intentional or accidental. Accidental damage may result from
bugs in the virus, encountering an unknown type of system, or perhaps unanticipated multiple viral
infection.

3. Trigger - Determines when to activate payload. This is part of virus which determines conditions for
which the payload is activated. This conditions may be a particular date, time, presence of another
program, opening specific file, etc.

There are four phases in spreading computer viruses ([35], page 205):
1. Dormant phase - The virus is idle (inactive) in the dormant phase. It has accessed the target’s device

but does not take any action. The virus will eventually be activated by the trigger. Not all viruses
have dormant phase.

2. Propagation phase - The virus starts propagating (spreading) by replicating itself and places a copy of
itself into other programs or into certain system areas on the disk. The copy may not be identical
to the propagating version because viruses often change in order to evade detection. Each infected
program will contain a clone of the virus which will enter its own propagation phase as well.

3. Triggering phase - The virus is activated to perform actions it is supposed to accomplish. This phase
can be caused by various system events such as the number of times the virus has cloned, after a set
time interval has elapsed, etc.

4. Execution phase - In the execution phase the payload will be released. It can harm deleting files,
crashing the system, etc or it can be harmless too and pop some humorous messages on screen.

Since computer viruses pose a serious problem to individual and cooperative computer systems, a lot
of effort has been dedicated into studying how to avoid their deleterious actions, trying to create antivirus
programs acting as vaccines in personal computers or in strategic network nodes.

Definition 1.3. ([4], page 66)
Antivirus software is a computer program created to prevent, detect, identify and remove computer viruses and
malware.
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As hardware and software technology developed and computer networks became an essential tool for
daily life, viruses started to be a major threat. Today, these programs have more complex codes, are capable
of producing mutations of themselves and their detection and removal by antivirus programs became
more difficult [15]. In addition, they are capable of acquiring personal data from network users, such as
passwords and bank accounts, causing severe damage to individuals and corporations. Consequently,
better understanding computer viruses spreading dynamics is an important matter in order to improve the
safety and reliability in computer systems and networks.

Some computer viruses have a latent period. Latent period is time period in life cycle of computer
virus during which individual computers are exposed to a computer virus but are not yet infected (for
example, downloaded file may be corrupted, but virus does not spread until user activates corrupted file
[16]). Hence, latent period can be interpreted as dormant phase in life cycle of computer virus. An infected
computer with latency, called an exposed computer, will not infect other computers immediately. Based
on these characteristics (virus activation after some time), different types of time delay are used in some
mathematical models to in order to precisely explain computer virus propagation.

Infections in computer networks are complex. However, unlike contagious diseases, viruses in com-
puters or computer networks can spread and cause destruction in a few minutes. Dynamics of computer
viruses has always drawn resemblance to modeling of biological epidemiology. Mathematical modeling
has proven to be an important tool in analysis of virus spread and control in computer networks. So far,
different mathematical models have been discussed. In [7], the authors proposed a deterministic SIR model
which describes the evolution of self-propagating malware in computer networks, analyzed the stability
of equilibrium points and illustrated results with numerical examples. Essouifi et al. in [11] proposed a
deterministic and stochastic SIR-SIS model for the spread of the virus through the two-degree network
and analyze its dynamics. In [22] author analyzed stochastic SIR model for computer virus propagation
and introduced control variables, while in [26] authors analyzed dynamic of stochastic SEIR model. Such
models take into account key factors that administer the virus spread and prognosticate how the infection
will behave over time period.

As it was stated in the previous paragraph, mathematical modeling is very important tool in analyzing
the dynamic of computer viruses. It is possible to use mathematical models which were constructed for
biological viruses for computer viruses, because computer viruses were constructed according to biological
viruses i.e. biological viruses were inspiration for construction of computer viruses. Analogy between
biological and computer viruses is given in following table (this analogy was given in ([12], page 92) but
last column about modern viruses was given by authors)

Biological viruses Computer viruses (up to 2000s) Computer viruses (nowadays)
Attack on specific cells Attack on specific file formats Attack on specific host vulnera-

bilities
Infected cells produce new off-
springs

Infected programs (codes) pro-
duce new viral codes

Infected hosts produce new viral
codes or are used to launch new
attacks

Modification of cell’s genome Modification of program’s fun-
ctions

Modification of host’s functions

Viruses use cell’s structure to
replicate

Viruses use file’s structures for
copy mechanisms

Viruses use host’s abilities to
spread

Viral interactions Combined viruses Combined viruses
Viruses replicate only in living
cells

Execution is required for virus
spread

Host must be powered on or
connected to network for virus
spread

Already infected cells are not re-
infected

Virus use an infection marker to
prevent overinfection

Virus use an infection marker to
prevent overinfection
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Retrovirus - virus with ability
to suppress immune response of
organism

Virus specifically bypasses a
given antivirus software - Source
code viruses

Source code viruses

Viral mutation Viral polymorphism Viral polymorphism
Healthy virus carriers Latent or dormant viruses Latent or dormant viruses

Table 1. Analogy between biological and computer viruses.

As it was states in previous table, the difference between modern viruses and viruses which were
developed up to 2000s is that for modern viruses host is computer, not specific file. Also, modern viruses are
far more sophisticated in a way of infiltrating and attacking its targets, although basic idea for constructing
and infecting stays the same. Our mathematical models and analysis will consider nowadays viruses. Also,
viruses with multipartite will not be analyzed.

The most frequent viruses and malware in 2023. according to [17] were: financial malware, ransomware,
Trojans, miners etc.

1.2. Mathematical SIRS model for describing the spread of computer viruses
Mathematical modeling of biological viruses became a very important tool to understand their propaga-

tion and control. Different mathematical (epidemiological) models are used for modeling different type of
diseases. Kerman and McKendric were pioneers in the field of mathematical epidemiology. They proposed
now famous SIR model in articles ([18], [19] and [20]) which is a model based on ordinary differential equa-
tions. The model’s name comes from words ”Susceptible” (S), ”Infected” (I) and ”Recovered” (R) because
total population of people had been divided into three mutually independent compartments. Model has
form

dS(t)
dt
= −βS(t)I(t),

dI(t)
dt
= βS(t)I(t) − γI(t),

dR(t)
dt
= γI(t),

for t ≥ 0 where (S(0), I(0),R(0)) ∈ R3
+ is initial value, β > 0 is transmission rate and γ > 0 is recovery rate.

Total population size is constant N. Besides these three mentioned compartments, the whole population
can be divided into more compartments such as: ”Exposed” (E) or ”Vaccinated” (V) individuals. In that
way SEIR, SVIR, SVEIR models are obtained. Also, there are SIRS models (in these models after recovery
the person does not obtain permanent immunity and after some time again becomes susceptible to disease).

Previously mentioned models belong to the class of deterministic models. Deterministic models were
firstly introduced in the field of mathematical epidemiology and, for some time, they were only tool for
modeling epidemics. However, deterministic models cannot describe the spread of diseases in the best way
due to unpredictable human behavior and random contact, which leads us to the conclusion that determi-
nistic models have to be improved via environmental uncertainty. Environmental uncertainty or random
effects in deterministic models can be introduced in several ways, such as: centering around equilibrium
of deterministic model, parameter perturbation, perturbation proportional to the variables and using
Markov chains [31]. In that way stochastic epidemiological models are obtained. The first three previously
mentioned ways introduce randomness in a deterministic model using Brownian motion. Beside Brownian
motion, randomness can be introduce in models in other ways (for example, using Poisson jumps, colored
noise or via mean-reverting processes [10]). Due to the nature of diseases (randomness of spread caused by
unpredictable and accidental contact between people), stochastic models are more realistic and appropriate
in modeling epidemics than deterministic ones, as they introduce the environmental uncertainty. In recent
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years, many epidemiological models have been proposed in order to better understand and control the
spread of diseases (see, for example, [10], [14], [21], [29], [31]).

Due to their similarity to biological viruses (which was stated in Table 1), dynamic of computer viruses
can also be described using mathematical models which can be deterministic and stochastic. Deterministic
and stochastic models offer different advantages (for example, deterministic models are intuitive but do
not describe reality precisely, while stochastic models capture environmental randomness). A lot of models
(mainly deterministic, but also some of stochastic type) were proposed, such as [7], [11], [22], [26]. The
authors analyzed different problems (existence and uniqueness of solution, boundedness, different types of
stabilities of equilibrium points, extinction of disease, stationary distributions, persistence of disease, etc).

J. Zhao et al. in [38] introduced the stochastic SIRS model for two different viruses and analyzed its
dynamics. In Table 1 we can see analogy between biological viruses and computer viruses. The biggest
similarities are how they reproduce (by replication), fast spreading of infection, how they attack their
targets, mutations, etc. Furthermore, we can interpret previously mentioned model for computer viruses
because computer viruses have similar (almost same) dynamics of spreading as biological viruses (spread
via infecting its target). The model was constructed assuming that the total population of computer units
N included in the system is a constant and is divided into four mutually independent groups:
• S - susceptible computers,
• I1 - computers infected with first virus,
• I2 - computers infected with second virus,
• R - recovered or removed computers.
Let B1(t) and B2(t), t ≥ 0 be two independent Brownian motions defined on complete probability space

(Ω,F ,P) with filtration {Ft}t≥0 satisfying usual conditions (i.e. right continuous and increasing, while F0

contains all P-null sets), whereFt = F
B1

t ∪F
B2

t andF Bi
t , i = 1, 2 are σ-algebras derived from natural filtrations

of Brownian motions B1 and B2. The model which authors proposed in [38] has the form:

dS(t) =
(
µ − β1S(t)I1(t) − β2S(t)I2(t) − µS(t) + δR(t)

)
dt − αS(t)I1(t)dB1(t) − σS(t)I2(t)dB2(t),

dI1(t) =
(
β1S(t)I1(t) − (µ + γ1)I1(t)

)
dt + αS(t)I1(t)dB1(t),

dI2(t) =
(
β2S(t)I2(t) − (µ + γ2)I2(t)

)
dt + σS(t)I2(t)dB2(t),

dR(t) =
(
γ1I1(t) + γ2I2(t) − (µ + δ)R(t)

)
dt,

(1)

for t ≥ 0 where (S(0), I1(0), I2(0),R(0)) ∈ R4
+ is initial value. All constants are positive and have the following

meaning:
- µ is the rate of new units of computers included in system and also a death rate due to computer

break-down or energy crash;
- δ is the rate according to which recovered computers become susceptible because after some time

computers can be again infected with the same virus, i.e. it is transition rate from R to S;
- β1 and β2 are transmission rates (i.e. rates according to which viruses spread through nodes due to

contact between infected and susceptible nodes) for the first and second virus, respectively;
- γ1 and γ2 are recovery rates for infected computers with the first virus and second virus, respectively,

due to antivirus ability of the network;
- α and σ are intensities of independent environmental noises B1(t) and B2(t).
It is assumed that Brownian motions are independent because it is possible to find two independent

computer viruses (for example, Trojans and worms are independent). Hence, previously mentioned model
can describe dynamic of two independent computer viruses.

For system (1) authors proved the existence and uniqueness of a global positive solution, gave sufficient
conditions for stochastically asymptotic stability of disease-free equilibrium, proved the boundedness of
solution and illustrated given results with numerical examples.

Environmental fluctuations can be introduced in model in other ways beside previously mentioned.
Brownian motion is an example of white noise, but beside white noise, colored noise can also be introduced
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in system via Markov chains [5]. Furthermore, environmental noise can be introduced using driven jump
processes (Poisson jump or Lévy jump), mean-reverting processes, etc. (see, for example, [1], [10], [21], [27],
[34]).

Different viruses have different behaviour due to their construction and purpose [16]. For example, after
downloading corrupted file, that file has to be opened in order to activate virus, i.e. virus will be activated
after some period of time during which it stays in latency. Hence, time dependent delay can be good way
for describing latent period (due to difference in viruses’ construction and hence behaviour). Furthermore,
sudden environmental changes such as power outage or guided cyber attacks can manifest as very strong
shocks for system and lead to discontinuous sample paths. Therefore, Brownian motion cannot anymore
describe such sudden changes and hence driven jump processes are introduced.

Inspired by everything mentioned (latent period and sudden environmental changes), model (1) will
be improved by introducing time dependent delay and Poisson jump in order to get more realistic results
because only white noise cannot describe real situation (latency and strong environmental shocks) properly,
i.e. latent period can mathematically be described using time dependent delay (time delay as function
because latent period varies due to construction and purpose of viruses), while sudden environmental
shocks such as guided cyber attacks or power outage can be explained via jump processes (Poisson jump
or Lévy jump).

In order to adapt model (1) to the spread of computer viruses, we will introduce new features in the
mentioned model step by step. First, new constants and coefficients will be introduced in order to better
explain the functioning of antivirus. Also, total population size will not be constant, it will be dependent
of time. Second, a time dependent delay and a Poisson jump will be introduced. All that mentioned leads
to a more realistic model that can better explain real situations. For this new model, the existence and
uniqueness of the global positive solution will be proven, sufficient conditions for the extinction of disease
and the strong stochastic persistence in the mean of diseases will be derived and theoretical results will be
illustrated with numerical simulations using Euler-Maruyama method.

Lets introduce following stochastic model for the spread of computer viruses (shorter SM) with addi-
tional parameters comparing to model (1):

dS(t) =
(
Λ − β1S(t)I1(t) − β2S(t)I2(t) − (µ + γ)S(t) + δR(t)

)
dt − σ1S(t)I1(t)dB1(t) − σ2S(t)I2(t)dB2(t),

dI1(t) =
(
β1S(t)I1(t) − (µ + ε1 + γ1)I1(t)

)
dt + σ1S(t)I1(t)dB1(t),

dI2(t) =
(
β2S(t)I2(t) − (µ + ε2 + γ2)I2(t)

)
dt + σ2S(t)I2(t)dB2(t),

dR(t) =
(
γS(t) + γ1I1(t) + γ2I2(t) − (µ + δ)R(t)

)
dt,

(2)

for t ≥ 0, where positive constants are:
- Λ is number of new units of computers included in system (network) which have already been

equipped with antivirus software,
- ε1 and ε2 are death rates caused by first and second virus, respectively,
- µ is death rate due to computer break-down or loss energy 1),
- γ is recovery rate for susceptible computers due to antivirus ability of network 2),
- β1, β2, δ, γ1, γ2 have the same meaning as mentioned before,
- σ1 and σ2 are intensities of Brownian motions B1(t) and B2(t), respectively.

1)In this framework µ represents the rate of removal of computers from the system, specifically due to irreparable breakdowns or
depletion of energy resources.

2)How does antivirus software work? Antivirus software has list of files/codes which are recognized and classified as malicious,
i.e. viruses. With every software update, new viruses and/or their variants are added to the list. Each time when antivirus software
is activated, it scans network or computer for potential threats. If some file is on the list, it is removed from system (if it is not on the
list, it stays in the computer or system). In that way susceptible computers are treated. If some file/code is not recognized as virus
and it turns out to be, that file/code will infect computer or system after its activation. Next time when antivirus software is activated
(after new update) it again scans computer or network and if recognizes infected file as virus it will remove it. In that way infected
computers are treated.
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Model (2) is improved version of model (1) because:
-model (2) has different parameters for death rate and number of new units of computers included in

system, while model (1) does not have,
-model (2) includes recovery rate for susceptible computers which model (1) does not include and
-model (2) includes different death rates caused by different viruses which model (1) does not include.

Time dependent delay will be introduced in our model because corrupted file may be activated after
some time (i.e. virus is in dormant phase or latent period). It is natural to assume that different viruses
have different delays. Thus, let

δ1 : R+ → [0, τ], δ2 : R+ → [0, τ], τ > 0

be continuous and differentiable functions (with continuous and bounded first derivatives) such that

t − τ ≤ t − δi(t) ≤ t, i = 1, 2.

Depending on the construction and purpose of viruses, time delay functions can have different physical
interpretation. For example, if virus is constructed to be activated after certain time period, than delay can
be interpreted as constant or linear function, or delay can be interpreted as exponential decay function if
virus is constructed to be activated on file opening.

Our model with the delay now has the form:

dS(t) =
(
Λ − β1S(t)I1(t − δ1(t)) − β2S(t)I2(t − δ2(t)) − (µ + γ)S(t) + δR(t)

)
dt

− σ1S(t)I1(t − δ1(t))dB1(t) − σ2S(t)I2(t − δ2(t))dB2(t),

dI1(t) =
(
β1S(t)I1(t − δ1(t)) − (µ + ε1 + γ1)I1(t)

)
dt + σ1S(t)I1(t − δ1(t))dB1(t),

dI2(t) =
(
β2S(t)I2(t − δ2(t)) − (µ + ε2 + γ2)I2(t)

)
dt + σ2S(t)I2(t − δ2(t))dB2(t),

dR(t) =
(
γS(t) + γ1I1(t) + γ2I2(t) − (µ + δ)R(t)

)
dt,

for t ≥ −τ.
Beside time delay, sudden environmental perturbations such as power outage, guided cyber attacks or

antivirus treatments may affect epidemic model and manifest as extreme changes in transmission coeffi-
cients of viruses [15]. Disturbances like this can lead to discontinuous sample path trajectories and cannot
be described only with Brownian motion. This phenomenon can be mathematically described using driven
jump processes. We will use Poisson process as driven jump process to describe this phenomena. In case of
computer viruses, the new update of antivirus can be interpreted as a negative jump, while guided cyber
attacks can be interpreted as positive jump in spreading of viruses.

Let N̄ be Poisson counting process with characteristic measure λ defined of finite subsets Y of (0,+∞)
such that λ(Y) < +∞. Then Ñ(dt, du) = N̄(dt, du) − λ(du)dt denotes the compensated Poisson process which
is martingale.

Following Mao’s method for introducing white noise in models (see [6], [9] and [37]) we will introduce
jump in our model as

βidt + σidBi(t)→ βidt + σidBi(t) +
∫

Y
ηi(u)Ñ(dt, du), i = 1, 2.

Here dBi(t) = Bi(t+dt)−Bi(t) is increment of standard Brownian motion. Jump sizes ηi : Y×Ω→ R, i = 1, 2
are bounded3), continuous and B(Y) × Ft-measurable functions with respect to λ, where B(Y) is σ-algebra
with respect to set Y. Hence, the potentially infectious contacts made by the infected node with another
susceptible node in the population in the small time interval [t, t + dt) have expected value βidt, while

3)Model assumes bounded jump sizes. If jump sizes are not bounded, then additional constrains would be necessary.
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the variance is σ2
i dt +

∫
Y η

2
i (u)λ(du)dt, i = 1, 2 (for more details, see [34]). Since βi > 0, i = 1, 2 holds by

definition, the intensities of the environmental noises are small and the variance tends to 0 as dt tends to 0,
the perturbation remains positive.

New SM has the form:

dS(t) =
(
Λ − β1S(t)I1(t − δ1(t)) − β2S(t)I2(t − δ2(t)) − (µ + γ)S(t) + δR(t)

)
dt

− σ1S(t)I1(t − δ1(t))dB1(t) − σ2S(t)I2(t − δ2(t))dB2(t)

−

∫
Y

[
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

)]
S(t−)Ñ(dt, du),

dI1(t) =
(
β1S(t)I1(t − δ1(t)) − (µ + ε1 + γ1)I1(t)

)
dt + σ1S(t)I1(t − δ1(t))dB1(t)

+

∫
Y
η1(u)S(t−)I1

(
(t − δ1(t))−

)
Ñ(dt, du),

dI2(t) =
(
β2S(t)I2(t − δ2(t)) − (µ + ε2 + γ2)I2(t)

)
dt + σ2S(t)I2(t − δ2(t))dB2(t)

+

∫
Y
η2(u)S(t−)I2

(
(t − δ2(t))−

)
Ñ(dt, du),

dR(t) =
(
γS(t) + γ1I1(t) + γ2I2(t) − (µ + δ)R(t)

)
dt,

(3)

for t ≥ −τwith initial value

S0 = S(ξ) > 0, I0
1 = I1(ξ) ≥ 0, I0

2 = I2(ξ) ≥ 0, R0 = R(ξ) ≥ 0, ξ ∈ [−τ, 0], (4)

where (S(ξ), I1(ξ), I2(ξ),R(ξ)) ∈ L1([−τ, 0];R4
+). The class L1([−τ, 0];R4

+) is a family of Lebesgue integrable
functions from [−τ, 0] to R4

+ = {(x1, . . . , x4) ∈ R4
| xi > 0, i = 1, . . . , 6}. The functions S(t−), I1

(
(t − δ1(t))−

)
and

I2

(
(t − δ2(t))−

)
are left limits of S(t), I1(t − δ1(t)) and I2(t − δ2(t)), respectively, and the total population size at

time t is

N(t) = S(t) + I1(t) + I2(t) + R(t), t ≥ −τ, (5)

which is improvement considering [38] where total population size was constant. It is naturally to assume
that total population is variable because it changes during time as its compartments changes. One of the
first works where varying population size had been introduced were [2], [3], [30], etc.

In recent years a lot of papers about dynamic of epidemiological models for biological viruses with
Poisson or Lévy jump were proposed. Some of them are [10], [27], [34]. But, up to our knowledge, there
are no results which describe evolution of two computer viruses with time dependent delays and Poisson
jump. By incorporating time dependent delay and Poisson jump in our model we obtain a stochastic system
for describing the spread of computer viruses with richer dynamics compared to the previous ones which
could be found in the literature, allowing more accurate representation of real-world phenomena.

Remark 1.4. Introduced systems could be more realistic if we take all parameters not to be constants, but bounded
functions dependent of time. Analysis would be similar as in the case of constant parameters as it is naturally to
assume that there exist lower and upper boundaries for the parameters.

By allowing the parameters to be time dependent and bounded functions, we can capture the variability and flu-
ctuations in these parameters. Introducing lower and upper boundaries for the parameters is a reasonable assumption,
as it acknowledges that there are limits to how much these parameters can change.

This paper is structured as follows. In Section 2 preliminary results and basic assumptions are given.
For the stochastic model, the existence and uniqueness of positive global solution is proven in Section 3.
In addition, sufficient conditions for the extinction of viruses are derived in Theorem 4.2 (Section 4), while
sufficient conditions for the strong stochastic persistence in mean of diseases are given in Theorem 5.2
(Section 5). Section 6 contains numerical simulations which illustrate theoretical results.
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2. Preliminaries

In this section, we will introduce some basic notation and auxiliary results which will be used in proofs
of main results (for more details see, for example, [28], [32]). At the beginning, basic terms about stochastic
differential equations with time dependent delay and Poisson jump as well as Itô calculus will be stated.

As mentioned in the previous section, (Ω,F ,P) is a complete probability space with filtration {F }t≥0,
satisfying the usual conditions (i.e. right continuous and increasing andF0 contains all P-null sets). Let B(t)
denotes m-dimensional standard Brownian motion and {Ñ(t, ω) | t ≥ 0} compensated Poisson process (λ is
intensity of Poisson process). All processes are defined on same probability space and independent from
each other. Now, filtration is defined as Ft =

⋃m
i=1 F

Bi
t ∪ F

Ñ
t , where F Bi

t , i = 1, . . . ,m are σ-algebras derived
from natural filtrations of Brownian motions Bi, i = 1, . . . ,m while F Ñ

t is σ-algebra derived from natural
filtration of compensated Poisson process Ñ. Consider d-dimensional stochastic differential equation with
time dependent delay and Poisson jump

dx(t) = f (x(t), x(t−δ(t)), t)dt+1(x(t), x(t−δ(t)), t)dB(t)+
∫

Y
H(x(t−), x((t−δ(t))−),u)dÑ(dt, du), t ≥ −τ, (6)

with initial value x(θ) = ξ ∈ L1([−τ, 0];R4
+) and Y ⊆ (0,+∞) such that λ(Y) < +∞. Time delay δ : R+ → [0, τ]

is continuous and differentiable function. Function H(·, ·) : Rd
× Rd

× Y → Rd, which represents jump
diffusion coefficient, is right continuous with left limits, f : Rd

× Rd
× R+ → Rd is drift coefficient, while

1 : Rd
×Rd

×R+ → Rd×m is Brownian diffusion coefficient.
Let C2,1(Rd

× [0,+∞); [0,+∞)) denotes family of nonnegative functions V(x, t) defined on Rd
× [0,+∞)

with values in [0,+∞) which are twice continuously differentiable with respect to x and once with respect
to t. If V ∈ C2,1(Rd

× [0,+∞); [0,+∞)), we define differential operator LV : Rd
×Rd

× [0,+∞)→ R associated
with equation (6) as:

LV(x, y, t) = V′t (x, t) + V′x(x, t) f (x, y, t) +
1
2

trace[1T(x, y, t)V′′xx(x, t)1(x, y, t)]

+

∫
Y

(
V(x +H(x−, y−,u), t) − V(x, t) − V′x(x, t)H(x−, y−,u)

)
λ(du),

(7)

where

V′t (x, t) =
∂V(x, t)
∂t

, V′x(x, t) =
(∂V(x, t)
∂x1

,
∂V(x, t)
∂x2

, . . . ,
∂V(x, t)
∂xd

)
and V′′xx(x, t) =

(∂2V(x, t)
∂xix j

)
d×d
.

Using generalized Itô formula ([32], Theorem 1.16, page 9) we obtain

dV(x(t), y(t), t) = LV(x(t), y(t), t)dt+V′x(x(t), t)dB(t)+
∫

Y

(
V
(
x(t)+H

(
x(t−), y(t−),u

)
, t
)
−V(x(t), t)

)
Ñ(dt, du), (8)

where y(t) = x(t − δ(t)).

We will introduce following assumptions: Assumption 2.1 guarantees the boundedness of jump sizes,
Assumption 2.2 guarantees the existence and the uniqueness of the local solution of eq. (6), while Assump-
tion 2.3 guarantees the existence and the uniqueness of the global positive solution of eq. (6).

Assumption 2.1. There exist positive constant 0 < h < 1 such that for all t ≥ −τ following holds:∣∣∣ηi(u)
∣∣∣ ≤ h

µ

Λ
i = 1, 2.

Assumption 2.2. (Local Lipschitz condition)
For every n ≥ 1 there exist constant Kn > 0 such that for all t > −τ and for all x1, x2, y1, y2 ∈ Rd such that
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|xi| ∨ |yi| < n, i = 1, 2 following holds

| f (x1, y1, t) − f (x2, y2, t)|2 ∨ |1(x1, y1, t) − 1(x2, y2, t)|2 ≤ Kn(|x1 − x2|
2 + |y1 − y2|

2),∫
Y
|H(x1, y1,u) −H(x2, y2,u)|2λ(du) ≤ Kn(|x1 − x2|

2 + |y1 − y2|
2).

(9)

Assumption 2.3. Function δ(·) is continuously differential and there exist constants k1 ≥ 0 and 0 < k2 ≤ 1 such
that

k1 ≤ δ
′(t) ≤ k2.

Next lemmas will be very useful in our analysis (in the analysis of the extinction and the persistence of
viruses).

Lemma 2.4. (Strong law of large numbers for continuous local martingales, ([28], Theorem 3.4, page 12))
Let M = {M(t) | t ≥ 0} be a real-valued continuous local martingale vanishing at t = 0. Then

lim
t→∞

[M,M](t) = ∞ a.s.4)
⇒ lim

t→∞

M(t)
[M,M](t)

= 0 a.s.

and also
lim sup

t→∞

[M,M](t)
t

< ∞ a.s. ⇒ lim
t→∞

M(t)
t
= 0 a.s,

where [M,M](t) is quadratic variation process of martingale M.

Lemma 2.5. (Strong law of large numbers for local martingales, ([24], Theorem 1, page 219))
Let M = {M(t), t ≥ 0} be local martingale vanishing at t = 0. If

lim
t→∞

∫ t

0

d⟨M,M⟩(s)
(1 + s)2 < ∞ a.s.

then
lim
t→∞

M(t)
t
= 0 a.s,

where ⟨M,M⟩(t) is predictable quadratic variation process of martingale M.5)

Remark 2.6. Let us denote

Γ =

{
(S, I1, I2,R) ∈ R4

+

∣∣∣∣∣∣ Λ

µ + ε1 + ε2
≤ N(t) ≤

Λ

µ
, t ≥ −τ

}
.

We will observe the dynamic of the system (3) in the set Γ.

3. Existence and uniqueness of a positive global solution

In this section existence and uniqueness of a positive global solution of the system of stochastic diffe-
rential equations (3) will be shown.

4)Abbreviation a.s. stands for almost surely.
5)Shortly, relation [M,M](t) = ⟨M,M⟩(t) +Mt, where Mt is local martingale part, holds. More about this relation can be found in the

standard literature, for example see [25], [33].
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Theorem 3.1. For any initial value (S(ξ), I1(ξ), I2(ξ),R(ξ)) ∈ L1([−τ, 0];Γ) there exist unique global solution
(S(t), I1(t), I2(t),R(t)), t ≥ −τ of the system of stochastic differential equations (3) and the solution will remain in Γ
a.s. Moreover,

Λ

µ + ε1 + ε2
≤ N(t) ≤

Λ

µ
, t ≥ −τ. (10)

Proof. Since the coefficients of system (3) satisfy the local Lipschitz condition (9), then for any initial value
(S(ξ), I1(ξ), I2(ξ),R(ξ)) ∈ L1([−τ, 0];Γ) there is unique local solution on [−τ, τe) (for more details see [23]),
where τe represents explosion time (see definition of explosion time in [28]). To prove this solution is global,
we have to prove that τe = ∞ a.s.

Lets choose k0 ≥ 0 sufficiently large such that for initial value holds S(ξ), I1(ξ), I2(ξ),R(ξ) ∈
[

1
k0
, k0

]
, for

ξ ∈ [−τ, 0]. For each k ≥ k0 let us define stopping time (see definition of stopping time in [28]) as

τk = inf
t∈[−τ,τe)

{
min{S(t), I1(t), I2(t),R(t)} ≤

1
k
∨ max{S(t), I1(t), I2(t),R(t)} ≥ k

}
,

where we set inf ∅ = ∞. Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk. Then, τ∞ ≤ τe. If we
show that τ∞ = ∞ a.s, then τe = ∞ a.s. which means that (S(t), I1(t), I2(t),R(t)) ∈ Γ, a.s. for all t ≥ −τ, i.e.
(S(t), I1(t), I2(t),R(t)) is positive global solution of system (3). Thus, we only need to prove that τ∞ = ∞ a.s.
If this is not true, than there exist a pair of constants T > 0 and ϵ ∈ (0, 1) such that P{τ∞ ≤ T} > ϵ. Therefore,
there is an integer k ≥ k0 such that

P{τk ≤ T} ≥ ϵ, ∀k ≥ k0. (11)

Bearing in mind (5), i.e. N(t) = S(t) + I1(t) + I2(t) + R(t), t ≥ −τ it follows that

dN(t) = dS(t) + dI1(t) + dI2(t) + dR(t).

Therefore, summing all four equations from (3) following ordinary differential equation is obtained

dN(t) =
(
Λ − µN(t) − ε1I1(t) − ε2I2(t)

)
dt.

For t ∈ [−τ, τk) it follows that(
Λ −

(
µ + ε1 + ε2

)
N(t)

)
dt ≤ dN(t) ≤

(
Λ − µN(t)

)
dt.

Solving previous inequalities we get

e−(µ+ε1+ε2)t
(
N(0) −

Λ

µ + ε1 + ε2

)
+

Λ

µ + ε1 + ε2
≤ N(t) ≤ e−µt

(
N(0) −

Λ

µ

)
+
Λ

µ
.

Using assumption about initial condition yields to

Λ

µ + ε1 + ε2
≤ N(t) ≤

Λ

µ
, t ∈ [−τ, τk).

Let us define C2,1-function V := V1 + V2 : R4
+ → [0,∞) as

V1(t) := V1(S(t), I1(t), I2(t),R(t))
= (S(t) + a1 − a1 ln S(t)) + (I1(t) + 1 − ln I1(t)) + (I2(t) + 1 − ln I2(t)) + (R(t) + 1 − ln R(t)),

(12)

where a1 is positive constant which has to be determined and function V2 will be determined later. Non-
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negativity of function V1 follows from inequality u + 1 − ln u > 0, for any u > 0.

Using (7), differential operator LV1 associated with function V1 has following form

LV1(t) =
(
1 −

a1

S(t)

)(
Λ − β1S(t)I1(t − δ1(t)) − β2S(t)I2(t − δ2(t)) − (µ + γ)S(t) + δR(t)

)
+

(
1 −

1
I1(t)

)(
β1S(t)I1(t − δ1(t)) −

(
µ + ε1 + γ1

)
I1(t)

)
+

(
1 −

1
I2(t)

)(
β2S(t)I2(t − δ2(t)) −

(
µ + ε2 + γ2

)
I2(t)

)
+

(
1 −

1
R(t)

)(
γS(t) + γ1I1(t) + γ2I2(t) − (µ + δ)R(t)

)
+

a1σ2
1I2

1(t − δ1(t))
2

+
a1σ2

2I2
2(t − δ2(t))

2

+
σ2

1S2(t)I2
1(t − δ1(t))

2I2
1(t)

+
σ2

2S2(t)I2
2(t − δ2(t))

2I2
2(t)

+

∫
Y

[
S(t) −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−) + a1

− a1 ln
[
S(t) −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

]
+ I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1 − ln

[
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)]
+ I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1 − ln

[
I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)]
+ R(t) + 1 − ln R(t)

]
λ(du)

−

∫
Y

[
S(t) + a1 − a1 ln S(t) + I1(t) + 1 − ln I1(t) + I2(t) + 1 − ln I2(t) + R(t) + 1 − ln R(t)

]
λ(du)

−

∫
Y

[
−

(
1 −

a1

S(t)

)(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

+
(
1 −

1
I1(t)

)
η1(u)S(t−)I1

(
(t − δ1(t))−

)
+

(
1 −

1
I2(t)

)
η2(u)S(t−)I2

(
(t − δ2(t))−

)]
λ(du)

:= L1 + L2,

(13)

where

L1 =
(
Λ + (3 + a1)µ + ε1 + ε2 + a1γ + γ1 + γ2 + δ

)
− µN(t) − ε1I1(t) − ε2I2(t) −

a1

S(t)

(
Λ + δR(t)

)
−

1
R(t)

(
γS(t) + γ1I1(t) + γ2I2(t)

)
+ a1

(
β1I1(t − δ1(t)) + β2I2(t − δ2(t))

)
−
β1S(t)I1(t − δ1(t))

I1(t)

−
β2S(t)I2(t − δ2(t))

I2(t)
+

a1

2

(
σ2

1I2
1(t − δ1(t)) + σ2

2I2
2(t − δ2(t))

)
+
σ2

1S2(t)I2
1(t − δ1(t))

2I2
1(t)

+
σ2

2S2(t)I2
2(t − δ2(t))

2I2
2(t)

and

L2 = −a1

∫
Y

ln
[
1 −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

S(t)

]
λ(du) −

∫
Y

ln
[
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t)

]
λ(du)

−

∫
Y

ln
[
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t)

]
λ(du) − a1

∫
Y

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

S(t)
λ(du)

+

∫
Y

η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t)

λ(du) +
∫

Y

η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t)

λ(du).



M. Dordević, J. Dordević / Filomat 39:8 (2025), 2525–2556 2537

After omitting some nonpositive terms we obtain

L1 ≤
(
Λ + (3 + a1)µ + ε1 + ε2 + a1γ + γ1 + γ2 + δ

)
− ε1I1(t) − ε2I2(t) + a1β1I1(t − δ1(t))

+ a1β2I2(t − δ2(t)) +
σ2

1

2

(
a1 + k4

)
I2
1(t − δ1(t)) +

σ2
2

2

(
a1 + k4

)
I2
2(t − δ2(t)).

(14)

According to Assumption 2.1 and applying Taylor formula up to second term to the functions ln (1 − x),
ln (1 + y) and ln (1 + z), where x = (η1(u)I1((t−δ1(t))−)+η2(u)I2((t−δ2(t))−))S(t−)

S(t) , y = η1(u)S(t−)I1((t−δ1(t))−)
I1(t) and z = η2(u)S(t−)I2((t−δ2(t))−)

I2(t)
yields to

L2 ≤ a1

∫
Y

(η1(u)I1((t−δ1(t))−)+η2(u)I2((t−δ2(t))−))2S2(t−)
S2(t)

2
(
1 − θ (η1(u)I1((t−δ1(t))−)+η2(u)I2((t−δ2(t))−))2S2(t−)

S2(t)

)λ(du)

+

∫
Y

η2
1(u)S2(t−)I2

1((t−δ1(t))−)
I2
1(t)

2
(
1 − θ

η2
1(u)S2(t−)I2

1((t−δ1(t))−)
I2
1(t)

)λ(du) +
∫

Y

η2
2(u)S2(t−)I2

2((t−δ2(t))−)
I2
2(t)

2
(
1 − θ

η2
2(u)S2(t−)I2

2((t−δ2(t))−)
I2
2(t)

)λ(du)

≤ h2 µ
2

Λ2 k6λ(Y)
(

2a1

1 − 4θh2 µ
2

Λ2 k6
+

1

1 − θh2 µ
2

Λ2 k6

)
,

(15)

where θ ∈ (0, 1) is an arbitrary number. Substituting (15) and (14) in (13) we get

LV1(t) ≤
(
Λ + (3 + a1)µ + ε1 + ε2 + a1γ + γ1 + γ2 + δ

)
− ε1I1(t) − ε2I2(t) + a1β1I1(t − δ1(t)) + a1β2I2(t − δ2(t))

+
σ2

1

2

(
a1 + k4

)
I2
1(t − δ1(t)) +

σ2
2

2

(
a1 + k4

)
I2
2(t − δ2(t)) + h2 µ

2

Λ2 k6λ(Y)
(

2a1

1 − 4θh2 µ
2

Λ2 k6
+

1

1 − θh2 µ
2

Λ2 k6

)

= K1 − ε1I1(t) − ε2I2(t) + a1β1I1(t − δ1(t)) + a1β2I2(t − δ2(t)) +
σ2

1

2

(
a1 + k4

)
I2
1(t − δ1(t))

+
σ2

2

2

(
a1 + k4

)
I2
2(t − δ2(t)),

(16)

where

K1 := Λ + (3 + a1)µ + ε1 + ε2 + a1γ + γ1 + γ2 + δ + h2 µ
2

Λ2 k6λ(Y)
(

2a1

1 − 4θh2 µ
2

Λ2 k6
+

1

1 − θh2 µ
2

Λ2 k6

)
.

Now we can define function V2 as terms with delay. Let it be

V2(t) := V2(S(t), I1(t), I2(t),R(t))

= a2

∫ t

t−δ1(t)
I1(s)ds + a3

∫ t

t−δ2(t)
I2(s)ds + a4

∫ t

t−δ1(t)
I2
1(s)ds + a5

∫ t

t−δ2(t)
I2
2(s)ds,

(17)

where a2, a3, a4 and a5 are positive constants which have to be determined. Using (7) and Assumption 2.3
differential operator LV2 has following form (as derivative of parametric integrals)
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LV2(t) = a2

(
I1(t) − δ′1(t)I1(t − δ1(t))

)
+ a3

(
I2(t) − δ′2(t)I2(t − δ2(t))

)
+ a4

(
I2
1(t) − δ′1(t)I2

1(t − δ1(t))
)

+ a5

(
I2
2(t) − δ′2(t)I2

2(t − δ2(t))
)

≤ a2

(
I1(t) − k1I1(t − δ1(t))

)
+ a3

(
I2(t) − k1I2(t − δ2(t))

)
+ a4

(
I2
1(t) − k1I2

1(t − δ1(t))
)

+ a5

(
I2
2(t) − k1I2

2(t − δ2(t))
)
.

(18)

According to (12) and (17) function V(t) = V1(t) + V2(t) has following form

V(t) = V(S(t), I1(t), I2(t),R(t))
= (S(t) + a1 − a1 ln S(t)) + (I1(t) + 1 − ln I1(t)) + (I2(t) + 1 − ln I2(t)) + (R(t) + 1 − ln R(t))

+ a2

∫ t

t−δ1(t)
I1(s)ds + a3

∫ t

t−δ2(t)
I2(s)ds + a4

∫ t

t−δ1(t)
I2
1(s)ds + a5

∫ t

t−δ2(t)
I2
2(s)ds.

(19)

Using (16) and (18) operator LV is

LV(t) = LV1(t) + LV2(t) ≤ K1 + I1(t)
(
a2 − ε1

)
+ I2(t)

(
a3 − ε2

)
+ I1(t − δ1(t))

(
a1β1 − a2k1

)
+ I2(t − δ2(t))

(
a1β2 − a3k1

)
+ a4I2

1(t) + a5I2
2(t) + I2

1(t − δ1(t))
(σ2

1

2

(
a1 + k4

)
− a4k1

)
+ I2

2(t − δ2(t))
(σ2

2

2

(
a1 + k4

)
− a5k1

)
.

Since we want to eliminate terms with delay, we will chose a1 = k1 max
{
ε1
β1
, ε2
β2

}
, a2 = ε1, a3 = ε2,

a4 =

(
k1 max

{
ε1
β1
,
ε2
β2

}
+k4

)
σ21
2

k1
and a5 =

(
k1 max

{
ε1
β1
,
ε2
β2

}
+k4

)
σ22
2

k1
which yields to

LV(t) ≤ K1 + a4I2
1(t) + a5I2

2(t) ≤ K1 + k2(a4 + a5) := C. (20)

Applying generalized Itô formula (8) on function V(t) defined in (19), for arbitrary k ≥ k0 and T > 0 we
obtain

dV(t) = LV(t)dt +
(
1 −

a1

S(t)

)(
− σ1S(t)I1(t − δ1(t))dB1(t) − σ2S(t)I2(t − δ2(t))dB2(t)

)
+

(
1 −

1
I1(t)

)
σ1S(t)I1(t − δ1(t))dB1(t) +

(
1 −

1
I2(t)

)
σ2S(t)I2(t − δ2(t))dB2(t)

+

∫
Y

[
S(t) −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−) + a1

− a1 ln
(
S(t) −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

)
+ I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1 − ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

))
+ I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1 − ln

(
I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

))
+ R(t) + 1 − ln R(t)

]
Ñ(dt, du)

−

∫
Y

[
S(t)+a1−a1 ln S(t)+I1(t)+1−ln I1(t)+I2(t)+1−ln I2(t)+R(t)+1−ln R(t)

]
Ñ(dt, du).
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dV(t) = LV(t)dt +
(
a1σ1I1(t − δ1(t)) −

σ1S(t)I1(t − δ1(t))
I1(t)

)
dB1(t) +

(
a1σ2I2(t − δ2(t)) −

σ2S(t)I2(t − δ2(t))
I2(t)

)
dB2(t)

− a1

∫
Y

ln
[
1 −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

S(t)

]
Ñ(dt, du)

−

∫
Y

(
ln

[
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t)

]
+ ln

[
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t)

])
Ñ(dt, du).

Substituting (20) in the previous equality leads to

dV(t) ≤ Cdt +
(
a1σ1I1(t − δ1(t)) −

σ1S(t)I1(t − δ1(t))
I1(t)

)
dB1(t) +

(
a1σ2I2(t − δ2(t)) −

σ2S(t)I2(t − δ2(t))
I2(t)

)
dB2(t)

− a1

∫
Y

ln
[
1 −

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

S(t)

]
Ñ(dt, du)

−

∫
Y

(
ln

[
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t)

]
+ ln

[
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t)

])
Ñ(dt, du).

(21)

Integrating (21) from 0 to τk ∧ T, taking expectation of both sides and using martingale property of
Brownian motion and compensated process yields to

EV(τk ∧ T) − EV(0) ≤ CE(τk ∧ T) ⇒ EV(τk ∧ T) ≤ V(0) + CT. (22)

Let it beΩk = {τk ≤ T}, for k ≥ k0. Then, according to (11) it follows that P(Ωk) ≥ ϵ. For every ω ∈ Ωk at least
one of variables S(τk, ω), I1(τk, ω), I2(τk, ω) or R(τk, ω) is equal either 1

k or k. Therefore,
V(S(τk, ω), I1(τk, ω), I2(τk, ω),R(τk, ω)) is no less than either k + 1 − ln k or 1

k + 1 − ln 1
k . So we have,

V(S(τk, ω), I1(τk, ω), I2(τk, ω),R(τk, ω)) ≥ min
{
k + 1 − ln k,

1
k
+ 1 − ln

1
k

}
which yields to (using (22))

V(0) + CT ≥ E
(
IΩk V(τk ∧ T)

)
≥ ϵmin

{
k + 1 − ln k,

1
k
+ 1 − ln

1
k

}
,

where IΩk is indicator function of Ωk. Letting k→∞ leads to

∞ > V(0) + CT = ∞,

which is contradiction. Therefore, τ∞ = ∞ a.s, i.e. the solution of system (3) is unique global positive. In
addition, it follows that (10) holds for every t ≥ −τ.

4. Extinction

In this section, we will establish sufficient conditions under which disease is extinct from the population.

Definition 4.1. The system {x(t) | t ≥ 0} is said to be extinct almost surely if

lim sup
t→∞

x(t) = 0 a.s.

Theorem 4.2. (Extinction of viruses)
Let Assumption 2.1 holds and let (S(t), I1(t), I2(t),R(t)), t ≥ −τ be the solution of system (3) for any initial value
(S(ξ), I1(ξ), I2(ξ),R(ξ)) ∈ L1([−τ, 0];Γ).
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1. If one of the following conditions is satisfied

• Case(1.1)

σ2
1 > 2

(
β1 −

µ2

Λ2 (µ + ε1 + γ1)
)
> 0 a.s. i.e. R1

0 :=
Λ2

µ2(µ + ε1 + γ1)

(
β1 −

σ2
1

2

)
< 1, (23)

• Case(1.2)

σ2
1 >

β2
1

2(µ + ε1 + γ1)
a.s. i.e. R1∗

0 :=
β2

1

2σ2
1(µ + ε1 + γ1)

< 1, (24)

then the first virus will extinct exponentially almost surely in Γ, i.e.

lim sup
t→+∞

I1(t) = 0 a.s.

2. If one of the following conditions is satisfied

• Case(2.1)

σ2
2 > 2

(
β2 −

µ2

Λ2 (µ + ε2 + γ2)
)
> 0 a.s. i.e. R2

0 :=
Λ2

µ2(µ + ε2 + γ2)

(
β2 −

σ2
2

2

)
< 1, (25)

• Case(2.2)

σ2
2 >

β2
2

2(µ + ε2 + γ2)
a.s. i.e. R2∗

0 :=
β2

2

2σ2
2(µ + ε2 + γ2)

< 1, (26)

then the second virus will extinct exponentially almost surely in Γ, i.e.

lim sup
t→+∞

I2(t) = 0 a.s.

3. If the one of the following conditions is satisfied

• Case(3.1)

σ2
1 + σ

2
2 > 2

(
β1 + β2 −

µ2

Λ2 (2µ + ε1 + ε2 + γ1 + γ2)
)
> 0 a.s. i.e.

R
1,2
0 :=

Λ2

µ2(2µ + ε1 + ε2 + γ1 + γ2)

(
β1 + β2 −

σ2
1 + σ

2
2

2

)
< 1,

(27)

• Case(3.2)

β2
1

2σ2
1

+
β2

2

2σ2
2

< 2µ + ε1 + ε2 + γ1 + γ2 a.s. i.e. R1,2∗
0 :=

1
2µ + ε1 + ε2 + γ1 + γ2

(
β2

1

2σ2
1

+
β2

2

2σ2
2

)
< 1,

(28)

then both viruses will extinct exponentially almost surely in Γ, i.e.

lim sup
t→+∞

(I1(t) + I2(t)) = 0 a.s.
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Proof. 1. We will prove the first part of theorem.

• Case (1.1)
Applying generalized Itô formula (8) on function V(t) = ln (I1(t) + 1) leads to

dV(t) =
[

1
I1(t) + 1

(
β1S(t)I1(t − δ1(t)) −

(
µ + ε1 + γ1

)
I1(t)

)
−
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2

]
dt

+

∫
Y

[
ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
− ln (I1(t) + 1) −

1
I1(t) + 1

η1(u)S(t−)I1

(
(t − δ1(t))−

)]
λ(du)dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) +

∫
Y

(
ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
− ln (I1(t) + 1)

)
Ñ(dt, du)

=
[β1S(t)I1(t − δ1(t))

I1(t) + 1
−

(µ + ε1 + γ1)I1(t)
I1(t) + 1

−
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2

]
dt

+

∫
Y

[
ln

(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
−

η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

]
λ(du)dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) +

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du).

(29)

We will use following inequalities in order to derive estimation for (29):

S(t), I1(t − δ1(t)), I1(t) ≤ N(t) ≤
Λ

µ
;

1
I1(t) + 1

≤ 1; −
1

I1(t) + 1
≤ −
µ

Λ
; ln (1 + z) − z ≤ 0, z > 0.

Therefore,

d ln (I1(t) + 1) ≤
[β1Λ

2

µ2 − (µ + ε1 + γ1) −
σ2

1Λ
2

2µ2

]
dt +

σ1S(t)I1(t − δ1(t))
I1(t) + 1

dB1(t)

+

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du).

(30)

Integrating both sides of (30) from 0 to t and dividing with t we obtain

ln (I1(t) + 1) − ln (I1(0) + 1)
t

≤
1
t

∫ t

0

[
Λ2

µ2

(
β1 −

σ2
1

2

)
− (µ + ε1 + γ1)

]
ds +

1
t

M1(t) +
1
t

M2(t), (31)

where

M1(t) =
∫ t

0

σ1S(s)I1(s − δ1(s))
I1(s) + 1

dB1(s) (32)

and

M2(t) =
∫ t

0

∫
Y

ln
(
1 +
η1(u)S(s−)I1

(
(s − δ1(s))−

)
I1(s) + 1

)
Ñ(ds, du) (33)

are continuous (local) martingale and local martingale, respectively, such that M1(0) = 0 and M2(0) = 0.
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Also,

[M1,M1](t) =
∫ t

0

σ2
1S2(s)I2

1(s − δ1(s))

(I1(s) + 1)2 ds ≤
σ2

1Λ
4

µ4 t ⇒ lim sup
t→∞

[M1,M1](t)
t

≤
σ2

1Λ
4

µ4 < ∞, (34)

⟨M2,M2⟩(t) =
∫ t

0

∫
Y

ln2
(
1 +
η1(u)S(s−)I1

(
(s − δ1(s))−

)
I1(s) + 1

)
λ(du)ds ≤ ln2

(
1 +

hΛ
µ

)
λ(Y)t

⇒ lim
t→∞

∫ t

0

d⟨M2,M2⟩(s)
(1 + s)2 ≤ ln2

(
1 +

hΛ
µ

)
λ(Y) < ∞.

(35)

Hence, using Lemma 2.4 and Lemma 2.5 yields to

lim
t→∞

M1(t)
t
= 0 and lim

t→∞

M2(t)
t
= 0 a.s.

Taking limes superior of both sides of (31) and using condition (23) we can conclude that

lim sup
t→∞

ln (I1(t) + 1)
t

≤
Λ2

µ2

(
β1 −

σ2
1

2

)
− (µ + ε1 + γ1)

=
(
µ + ε1 + γ1

)(
R

1
0 − 1

)
< 0 a.s.

(36)

Since I1(t) > 0 holds for every t ≥ 0 (it is proven in Theorem 3.1) and ln is increasing function, using
inequality (36) there exist constant K > 0 such that

I1(t) < I1(t) + 1⇒ ln I1(t) < ln (I1(t) + 1) < −Kt.

Then it follows
I1(t) < I1(t) + 1 < e−Kt,

i.e. we can conclude that,
lim sup

t→∞
I1(t) = 0 a.s.

• Case (1.2)
Different inequalities then in the previous part of proof (Case (1.1)) will be used in order to estimate

(29). Using the fact that function f (x) = β1x −
σ2

1
2 x2, for x = S(t)I1(t−δ1(t))

I1(t)+1 , is increasing on
[
0, β1

σ2
1

]
and

therefore has maximum in β1

σ2
1

which is
β2

1

2σ2
1

and ln (1 + z) − z ≤ 0, for any z > 0 we get

d ln (I1(t) + 1) ≤
[ β2

1

2σ2
1

− (µ + ε1 + γ1)
]
dt +

σ1S(t)I1(t − δ1(t))
I1(t) + 1

dB1(t)

+

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du).

(37)

Integrating both sides of (37) from 0 to t and dividing with t yields to

ln (I1(t) + 1) − ln (I1(0) + 1)
t

≤
1
t

∫ t

0

[ β2
1

2σ2
1

− (µ + ε1 + γ1)
]
ds +

1
t

M1(t) +
1
t

M2(t), (38)

where M1(t) and M2(t) are defined in (32) and (33), respectively. Using the same consideration as in
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the previous part of proof (Case (1.1)), taking limes superior of (38) and using condition (24) we obtain

lim sup
t→∞

ln (I1(t) + 1)
t

≤
β2

1

2σ2
1

− (µ + ε1 + γ1)

=
(
µ + ε1 + γ1

)(
R

1∗
0 − 1

)
< 0 a.s.

Hence,
lim sup

t→∞
I1(t) = 0 a.s.

2. Extinction of second virus can be proved in the same way as we did for first virus using function
V(t) := ln (I2(t) + 1) and because of that the proof will be omitted.

3. Now we will prove the final part of theorem.

• Case (3.1)
Applying generalized Itô formula (8) on function V(t) := ln (I1(t) + I2(t) + 1) it follows that

dV(t) =
[ 1
I1(t) + I2(t) + 1

(
β1S(t)I1(t − δ1(t)) −

(
µ + ε1 + γ1

)
I1(t) + β2S(t)I2(t − δ2(t)) −

(
µ + ε2 + γ2

)
I2(t)

)
−
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + I2(t) + 1)2 −
σ2

2S2(t)I2
2(t − δ2(t))

2(I1(t) + I2(t) + 1)2

]
dt

+

∫
Y

[
ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1

)
− ln

(
I1(t) + I2(t) + 1

)
−

1
I1(t) + I2(t) + 1

η1(u)S(t−)I1

(
(t − δ1(t))−

)
−

1
I1(t) + I2(t) + 1

η2(u)S(t−)I2

(
(t − δ2(t))−

)]
λ(du)dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + I2(t) + 1
dB1(t) +

σ2S(t)I2(t − δ2(t))
I1(t) + I2(t) + 1

dB2(t)

+

∫
Y

[
ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1

)
− ln

(
I1(t) + I2(t) + 1

)]
Ñ(dt, du).

Hence,

dV(t) =
[β1S(t)I1(t − δ1(t))

I1(t) + I2(t) + 1
+
β2S(t)I2(t − δ2(t))

I1(t) + I2(t) + 1
−

(µ + ε1 + γ1)I1(t)
I1(t) + I2(t) + 1

−
(µ + ε2 + γ2)I2(t)
I1(t) + I2(t) + 1

−
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + I2(t) + 1)2 −
σ2

2S2(t)I2
2(t − δ2(t))

2(I1(t) + I2(t) + 1)2

]
dt

+

∫
Y

[
ln

(
1 +

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

I1(t) + I2(t) + 1

)

−

(
η1(u)I1

(
(t − δ1(t))−

)
+ η2(u)I2

(
(t − δ2(t))−

))
S(t−)

I1(t) + I2(t) + 1

]
λ(du)dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + I2(t) + 1
dB1(t) +

σ2S(t)I2(t − δ2(t))
I1(t) + I2(t) + 1

dB2(t)

+

∫
Y

ln
(
1+

(
η1(u)I1

(
(t − δ1(t))−

)
+η2(u)I2

(
(t − δ2(t))−

))
S(t−)

I1(t) + I2(t) + 1

)
Ñ(dt, du).

(39)
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We will use following inequalities in order to estimate (39):

S(t), I1(t − δ1(t)), I1(t), I2(t − δ2(t)), I2(t) ≤ N(t) ≤
Λ

µ
;

1
I1(t) + I2(t) + 1

≤ 1;

−
1

I1(t) + I2(t) + 1
≤ −
µ

Λ
; ln (1 + z) − z ≤ 0, for any z > 0.

Therefore,

d ln (I1(t) + I2(t) + 1) ≤
[
Λ2

µ2

(
β1 + β2

)
−

(
2µ + ε1 + ε2 + γ1 + γ2

)
−
Λ2

µ2

(σ2
1

2
+
σ2

2

2

)]
dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + I2(t) + 1
dB1(t) +

σ2S(t)I2(t − δ2(t))
I1(t) + I2(t) + 1

dB2(t)

+

∫
Y

ln
(
1+

(
η1(u)I1

(
(t − δ1(t))−

)
+η2(u)I2

(
(t − δ2(t))−

))
S(t−)

I1(t) + I2(t) + 1

)
Ñ(dt, du).

(40)

Integrating both sides of (40) from 0 to t and dividing with t leads to

ln (I1(t) + I2(t) + 1) − ln (I1(0) + I2(0) + 1)
t

≤
1
t

∫ t

0

[
Λ2

µ2

(
β1 + β2

)
−

(
2µ + ε1 + ε2 + γ1 + γ2

)
−
Λ2

µ2

(σ2
1

2
+
σ2

2

2

)]
ds

+
1
t

M3(t) +
1
t

M4(t) +
1
t

M5(t),

(41)

where

M3(t) =
∫ t

0

σ1S(s)I1(s − δ1(s))
I1(s) + I2(t) + 1

dB1(s) (42)

and

M4(t) =
∫ t

0

σ2S(s)I2(s − δ2(s))
I1(s) + I2(s) + 1

dB2(s) (43)

are continuous (local) martingales such that M3(0) = 0, M4(0) = 0 and

M5(t) =
∫ t

0

∫
Y

ln
(
1 +

(
η1(u)I1

(
(s − δ1(s))−

)
+ η2(u)I2

(
(s − δ2(s))−

))
S(s−)

I1(s) + I2(s) + 1

)
Ñ(ds, du) (44)

is local martingale such that M5(0) = 0. Furthermore,

[M3,M3](t) =
∫ t

0

σ2
1S2(s)I2

1(s − δ1(s))

(I1(s) + I2(s) + 1)2 ds ≤
σ2

1Λ
4

µ4 t ⇒ lim sup
t→∞

[M3,M3](t)
t

≤
σ2

1Λ
4

µ4 < ∞,

[M4,M4](t) =
∫ t

0

σ2
2S2(s)I2

2(s − δ2(s))

(I1(s) + I2(s) + 1)2 ds ≤
σ2

2Λ
4

µ4 t ⇒ lim sup
t→∞

[M4,M4](t)
t

≤
σ2

2Λ
4

µ4 < ∞,

⟨M5,M5⟩(t) =
∫ t

0

∫
Y

ln2
(
1 +

(
η1(u)I1

(
(s − δ1(s))−

)
+ η2(u)I2

(
(s − δ2(s))−

))
S(s−)

I1(s) + I2(s) + 1

)
λ(du)ds ≤ ln2

(
1 +

2hΛ
µ

)
λ(Y)t
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⇒ lim
t→∞

∫ t

0

d⟨M5,M5⟩(s)
(1 + s)2 ≤ ln2

(
1 +

2hΛ
µ

)
λ(Y) < ∞.

Hence, using Lemma 2.4 and Lemma 2.5 yields to

lim
t→∞

M3(t)
t
= 0, lim

t→∞

M4(t)
t
= 0 and lim

t→∞

M5(t)
t
= 0 a.s.

Taking limes superior of both sides of (41) and using condition (27) we obtain

lim sup
t→∞

ln (I1(t) + I2(t) + 1)
t

≤
Λ2

µ2

(
β1 + β2 −

σ2
1 + σ

2
2

2

)
− (2µ + ε1 + ε2 + γ1 + γ2)

=
(
2µ + ε1 + ε2 + γ1 + γ2

)(
R

1,2
0 − 1

)
< 0 a.s.

(45)

Since I1(t) > 0 and I2(t) > 0 holds for every t ≥ 0 (it is proven in Theorem 3.1), and ln is increasing
function, using inequality (45) there exist constant K > 0 such that

I1(t) + I2(t) < I1(t) + I2(t) + 1⇒ ln (I1(t) + I2(t)) < ln (I1(t) + I2(t) + 1) < −Kt.

Then it follows
I1(t) + I2(t) < I1(t) + I2(t) + 1 < e−Kt,

i.e. we can conclude that,
lim sup

t→∞

(
I1(t) + I2(t)

)
= 0 a.s.

• Case (3.2)
Different inequalities from previous part of proof (Case (3.1)) will be used in order to estimate (39).

Using the facts that function f (x) = β1x−
σ2

1
2 x2, for x = S(t)I1(t−δ1(t))

I1(t)+I2(t)+1 , is increasing on
[
0, β1

σ2
1

]
and therefore

has maximum in β1

σ2
1

which is
β2

1

2σ2
1
, the fact that function 1(y) = β2y− σ

2
2

2 y2, for y = S(t)I2(t−δ2(t))
I1(t)+I2(t)+1 , is increasing

on
[
0, β2

σ2
2

]
and because of that has maximum in β2

σ2
2

which is
β2

2

2σ2
2

and the fact that ln (1 + z) − z ≤ 0, for
any z > 0 we obtain

d ln (I1(t) + I2(t) + 1) ≤
[ β2

1

2σ2
1

+
β2

2

2σ2
2

−

(
2µ + ε1 + ε2 + γ1 + γ2

)]
dt

+
σ1S(t)I1(t − δ1(t))

I1(t) + I2(t)
dB1(t) +

σ2S(t)I2(t − δ2(t))
I1(t) + I2(t)

dB2(t)

+

∫
Y

ln
(
1+

(
η1(u)I1

(
(t − δ1(t))−

)
+η2(u)I2

(
(t − δ2(t))−

))
S(t−)

I1(t) + I2(t)

)
Ñ(dt, du).

(46)

Integrating both sides of (46) from 0 to t and dividing with t we get

ln (I1(t) + I2(t) + 1) − ln (I1(0) + I2(0) + 1)
t

≤
1
t

∫ t

0

[ β2
1

2σ2
1

+
β2

2

2σ2
2

−

(
2µ + ε1 + ε2 + γ1 + γ2

)]
ds

+
1
t

M3(t) +
1
t

M4(t) +
1
t

M5(t),

(47)

where M3(t),M4(t) and M5(t) are defined in (42), (43) and (44), respectively. As in the previous part of
proof (Case (3.1)), taking limes superior of both sides of (47) and using condition (28) yields to
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lim sup
t→∞

ln (I1(t) + I2(t) + 1)
t

≤
β2

1

2σ2
1

+
β2

2

2σ2
2

−

(
2µ + ε1 + ε2 + γ1 + γ2

)
=

(
2µ + ε1 + ε2 + γ1 + γ2

)(
R

1,2∗
0 − 1

)
< 0 a.s.

Hence,
lim sup

t→∞

(
I1(t) + I2(t)

)
= 0 a.s.

5. Strong persistence in mean

In this section we will establish sufficient conditions for the stochastically strong persistence in mean of
viruses in population.

Let us denote

⟨x(t)⟩ :=
1
t

∫ t

0
x(s)ds, t ≥ 0.

Definition 5.1. The system {x(t) | t ≥ 0} is said to be stochastically strong persistent in mean if

lim inf
t→∞

⟨x(t)⟩ = lim inf
t→∞

1
t

∫ t

0
x(s)ds > 0 a.s.

Theorem 5.2. (Strong persistence in mean)
Let Assumption 2.1 and Assumption 2.3 hold and let (S(t), I1(t), I2(t),R(t)), t ≥ −τ be the solution of system (3) for
any initial value (S(ξ), I1(ξ), I2(ξ),R(ξ)) ∈ L1([−τ, 0];Γ). If

1.

σ2
1 <

2µ4

Λ4

[
β1Λ

2

µ2 −
Λ2h2λ(Y)

2µ2 − (µ+ε1+γ1)
]
> 0 a.s. i.e. R̄1

0 :=
β1Λ

2

µ2
[
µ + ε1 + γ1 +

Λ2

µ2

( σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)] > 1,

(48)

then the first virus will strongly persist in mean almost surely in Γ.

2.

σ2
2 <

2µ4

Λ4

[
β2Λ

2

µ2 −
Λ2h2λ(Y)

2µ2 − (µ+ε2+γ2)
]
> 0 a.s. i.e. R̄2

0 :=
β2Λ

2

µ2
[
µ + ε2 + γ2 +

Λ2

µ2

( σ2
2Λ

2

2µ2 +
h2λ(Y)

2

)] > 1,

(49)

then the second virus will strongly persist in mean almost surely in Γ.

3.

σ2
1 + σ

2
2 <

2µ4

Λ4

[(
β1 + β2

)Λ2

µ2 −
Λ2h2λ(Y)
µ2 − (2µ + ε1 + ε2 + γ1 + γ2)

]
> 0 a.s. i.e.

R̄
1,2
0 :=

(β1 + β2)Λ2

µ2
[
2µ + ε1 + ε2 + γ1 + γ2 +

Λ2

µ2

( σ2
1Λ

2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)] > 1,

(50)

then both viruses will strongly persist in mean almost surely in Γ.
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Proof. 1. Let us apply generalized Itô formula (8) to the function V := V1 + V2 : R4
+ → [0,∞) where

V1(t) := − ln (I1(t) + 1) (51)

and function V2 will be determined later. Then

dV1(t) =
[
−

1
I1(t) + 1

(
β1S(t)I1(t − δ1(t)) −

(
µ + ε1 + γ1

)
I1(t)

)
+
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2

]
dt

+

∫
Y

[
− ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
+ ln (I1(t) + 1)

+
1

I1(t) + 1
η1(u)S(t−)I1

(
(t − δ1(t))−

)]
λ(du)dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) +

∫
Y

(
− ln

(
η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
+ ln (I1(t) + 1)

)
Ñ(dt, du)

≤

[
−
β1S(t)I1(t − δ1(t))

I1(t) + 1
+
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2 + µ + ε1 + γ1 +
β1S(t)I1(t − δ1(t))

I1(t) + 1

]
dt

+

∫
Y

η2
1(u)S2(t−)I2

1

(
(t − δ1(t))−

)
2(I1(t) + 1)2 λ(du)dt −

σ1S(t)I1(t − δ1(t))
I1(t) + 1

dB1(t)

−

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du),

(52)

where we added nonnegative term β1S(t)I1(t−δ1(t))
I1(t)+1 and applied Taylor series on the function ln (1 + a)

up to second term, for a = η1(u)S(t−)I1((t−δ1(t))−)
I1(t)+1 . In order to estimate (52) we will use Assumption 2.1,

inequalities S(t) ≤ Λµ ; 1
I1(t)+1 ≤ 1 and the fact that function f (x) = −β1x +

σ2
1

2 x2 is increasing on
[
β1

σ2
1
, Λ

2

µ2

]
and therefore has maximum in Λ2

µ2

(
where x = S(t)I1(t−δ1(t))

I1(t)+1 ≤
Λ2

µ2

)
. Therefore,

dV1(t) ≤
[
−
β1Λ

2

µ2 +
Λ2

µ2

(σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1 +

β1Λ

µ
I1(t − δ1(t))

]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t)

)
Ñ(dt, du).

(53)

Now, function V2 can be defined as

V2(t) :=
β1Λ

µ

∫ t

t−δ1(t)
I1(s)ds, (54)

where using rule for derivative of parametric integral and Assumption 2.3 one can obtain

dV2(t) =
β1Λ

µ

(
I1(t) − δ′1(t)I1(t − δ1(t))

)
≤
β1Λ

µ

(
I1(t) − k1I1(t − δ1(t))

)
. (55)

According to (51) and (54) function V = V1 + V2 is

V(t) = − ln (I1(t) + 1) +
β1Λ

µ

∫ t

t−δ1(t)
I1(s)ds.
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Therefore, using (53) and (55) it follows that

dV(t) ≤
[
−
β1Λ

2

µ2 +
Λ2

µ2

(σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1 +

β1Λ

µ
I1(t − δ1(t)) +

β1Λ

µ

(
I1(t) − k1I1(t − δ1(t))

)]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du)

≤

[
−
β1Λ

2

µ2 +
Λ2

µ2

(σ2
1Λ

2

2Λ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1 +

β1Λ

µ
I1(t) +

β1Λ

µ
C1

(
I1(t − δ1(t)) − I1(t − δ1(t))

)]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du)

=
[
−
β1Λ

2

µ2 +
Λ2

µ2

(σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1 +

β1Λ

µ
I1(t)

]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

∫
Y

ln
(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
Ñ(dt, du),

(56)

where C1 = max{1, k1}.

Integrating both sides of (56) from 0 to t and dividing with t yields to

− ln (I1(t) + 1) + β1Λ

µ

∫ t

t−δ1(t) I1(s)ds + ln (I1(0) + 1) − β1Λ

µ

∫ 0

−δ1(0) I1(s)ds

t

≤
1
t

∫ t

0

[
−
β1Λ

2

µ2 +
Λ2

µ2

(σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1

]
ds +

β1Λ

µ
1
t

∫ t

0
I1(s)ds

−
1
t

M1(t) −
1
t

M2(t),

where M1(t) and M2(t) are defined in (32) and (33), respectively. Hence,

β1Λ

µ
1
t

∫ t

0
I1(s)ds ≥ −

ln (I1(t) + 1)
t

+
β1Λ

µ
1
t

∫ t

t−δ1(t)
I1(s)ds +

ln (I1(0) + 1)
t

−
β1Λ

µ
1
t

∫ 0

−δ1(0)
I1(s)ds +

β1Λ
2

µ2 −
Λ2

µ2

(σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
− (µ + ε1 + γ1)

+
1
t

M1(t) +
1
t

M2(t).

(57)

Taking limes inferior of both sides of (57), using Lemma 2.4 and Lemma 2.5 (due to (34) and (35)), the
fact that − ln (I1(t) + 1) ≥ − ln Λµ ,−I1(t) ≥ −Λµ and condition (48) we obtain

lim inf
t→∞

1
t

∫ t

0
I1(s)ds ≥

β1Λ
2

µ2 −
Λ2

µ2

( σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
− (µ + ε1 + γ1)

β1Λ

µ

=

(R̄1
0 − 1)

(
Λ2

µ2

( σ2
1Λ

2

2µ2 +
h2λ(Y)

2

)
+ µ + ε1 + γ1

)
β1Λ

µ

> 0 a.s.
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2. Strong persistence in mean of second virus can be proved in the same way as we did for first virus
using function V(t) = − ln (I2(t) + 1) + β2Λ

µ

∫ t

t−δ2(t) I2(s)ds so the proof will be omitted.

3. We will prove strong persistence in mean for both viruses applying generalized Itô formula (8) on
function V := V1 + V2 : R4

+ → [0,∞) where

V1(t) := − ln (I1(t) + 1) − ln (I2(t) + 1) (58)

and function V2 will be determined later. Therefore,

dV1(t) =
[
−

1
I1(t) + 1

(
β1S(t)I1(t − δ1(t)) −

(
µ + ε1 + γ1

)
I1(t)

)
−

1
I2(t) + 1

(
β2S(t)I2(t − δ2(t))

−

(
µ + ε2 + γ2

)
I2(t)

)
+
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2 dt +
σ2

2S2(t)I2
2(t − δ2(t))

2(I2(t) + 1)2

]
dt

+

∫
Y

[
− ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
+ ln (I1(t) + 1)

− ln
(
I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1

)
+ ln (I2(t) + 1)

+
1

I1(t) + 1
η1(u)S(t−)I1

(
(t − δ1(t))−

)
+

1
I2(t) + 1

η2(u)S(t−)I2

(
(t − δ2(t))−

)]
λ(du)dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

+

∫
Y

[
− ln

(
I1(t) + η1(u)S(t−)I1

(
(t − δ1(t))−

)
+ 1

)
+ ln (I1(t) + 1)

− ln
(
I2(t) + η2(u)S(t−)I2

(
(t − δ2(t))−

)
+ 1

)
+ ln (I2(t) + 1)

]
Ñ(dt, du)

=
[
−
β1S(t)I1(t − δ1(t))

I1(t) + 1
−
β2S(t)I2(t − δ2(t))

I2(t) + 1
+ (µ + ε1 + γ1)

I1(t)
I1(t) + 1

+ (µ + ε2 + γ2)
I2(t)

I2(t) + 1

+
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2 +
σ2

2S2(t)I2
2(t − δ2(t))

2(I2(t) + 1)2

]
dt

+

∫
Y

[
− ln

(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)
+
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

− ln
(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)
+
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

]
λ(du)dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

−

∫
Y

[
ln

(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du).

Applying Taylor formula to functions ln (1 + a) and ln (1 + b)
(
where a = η1(u)S(t−)I1((t−δ1(t))−)

I1(t)+1 and b =
η2(u)S(t−)I2((t−δ2(t))−)

I2(t)+1

)
and adding nonnegative terms β1S(t)I1(t−δ1(t))

I1(t)+1 and β2S(t)I2(t−δ2(t))
I2(t)+1 results in the following

dV1(t) ≤
[
−
β1S(t)I1(t − δ1(t))

I1(t) + 1
+
σ2

1S2(t)I2
1(t − δ1(t))

2(I1(t) + 1)2 + µ + ε1 + γ1 +
β1S(t)I1(t − δ1(t))

I1(t) + 1

−
β2S(t)I2(t − δ2(t))

I2(t) + 1
+
σ2

2S2(t)I2
2(t − δ2(t))

2(I2(t) + 1)2 + µ + ε2 + γ2 +
β2S(t)I2(t − δ2(t))

I2(t) + 1

]
dt

(59)
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+

∫
Y

[η2
1(u)S2(t−)I2

1

(
(t − δ1(t))−

)
2(I1(t) + 1)2 +

η2
2(u)S2(t−)I2

2

(
(t − δ2(t))−

)
2(I2(t) + 1)2

]
λ(du)dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

−

∫
Y

[
ln

(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du).

In order to estimate (59) we will use Assumption 2.1, inequalities S(t) ≤ Λ
µ ; 1

I1(t)+1 ,
1

I2(t)+1 ≤ 1 and

the fact that function f (x) = −β1x +
σ2

1
2 x2 is increasing on

[
β1

σ2
1
, Λ

2

µ2

] (
where x = S(t)I1(t−δ1(t))

I1(t)+1 ≤
Λ2

µ2

)
and

1(y) = −β2y + σ
2
2

2 y2 is increasing on
[
β2

σ2
2
, Λ

2

µ2

] (
where y = S(t)I2(t−δ2(t))

I2(t)+1 ≤
Λ2

µ2

)
. Both functions reach their

maximum in Λ2

µ2 . Hence,

dV1(t) ≤
[
− (β1 + β2)

Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2

+ β1
Λ

µ
I1(t − δ1(t)) + β2

Λ

µ
I2(t − δ2(t))

]
dt −

σ1S(t)I1(t − δ1(t))
I1(t) + 1

dB1(t) −
σ2S(t)I2(t − δ2(t))

I2(t) + 1
dB2(t)

−

∫
Y

[
ln

(
1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du).

(60)

Now we can define the function V2 as

V2(t) := β1
Λ

µ

∫ t

t−δ1(t)
I1(s)ds + β2

Λ

µ

∫ t

t−δ2(t)
I2(s)ds, (61)

where (obtained as a derivative of parametric integrals and by applying Assumption 2.3)

dV2(t) = β1
Λ

µ

(
I1(t) − δ′1(t)I1(t − δ1(t))

)
+ β2
Λ

µ

(
I2(t) − δ′2(t)I2(t − δ2(t))

)
≤ β1
Λ

µ

(
I1(t) − k1I1(t − δ1(t))

)
+ β2
Λ

µ

(
I2(t) − k1I2(t − δ2(t))

)
.

(62)

According to (58) and (61) function V = V1 + V2 has following form

V(t) = − ln (I1(t) + 1) − ln (I2(t) + 1) + β1
Λ

µ

∫ t

t−δ1(t)
I1(s)ds + β2

Λ

µ

∫ t

t−δ2(t)
I2(s)ds.

Using (60) and (62) yields to

dV(t) ≤
[
− (β1 + β2)

Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2 + β1
Λ

µ
I1(t − δ1(t))

+ β1
Λ

µ

(
I1(t) − k1I1(t − δ1(t))

)
+ β2
Λ

µ
I2(t − δ2(t)) + β2

Λ

µ

(
I2(t) − k1I2(t − δ2(t))

)]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

(63)
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−

∫
Y

ln
[(

1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du)

≤

[
− (β1 + β2)

Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2 + β1
Λ

µ
I1(t)

+ β1
Λ

µ
C1

(
I1(t − δ1(t)) − I1(t − δ1(t))

)
+ β2
Λ

µ
I2(t) + β2

Λ

µ
C1

(
I2(t − δ2(t)) − I2(t − δ2(t))

)]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

−

∫
Y

ln
[(

1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du)

=
[
− (β1 + β2)

Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2 + β1
Λ

µ
I1(t) + β2

Λ

µ
I2(t)

]
dt

−
σ1S(t)I1(t − δ1(t))

I1(t) + 1
dB1(t) −

σ2S(t)I2(t − δ2(t))
I2(t) + 1

dB2(t)

−

∫
Y

ln
[(

1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du),

where C1 = max{1, k1}. Integrating both sides of (63) from 0 to t and dividing with t, we obtain
following

1
t

[
− ln (I1(t) + 1) − ln (I2(t) + 1) + β1

Λ

µ

∫ t

t−δ1(t)
I1(s)ds + β2

Λ

µ

∫ t

t−δ2(t)
I2(s)ds

+ ln (I1(0) + 1) + ln (I2(0) + 1) − β1
Λ

µ

∫ 0

−δ1(0)
I1(s)ds − β2

Λ

µ

∫ 0

−δ2(0)
I2(s)ds

]
≤

1
t

∫ t

0

[
− (β1 + β2)

Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2

]
ds

+ β1
Λ

µ
1
t

∫ t

0
I1(s)ds + β2

Λ

µ
1
t

∫ t

0
I2(s)ds −

1
t

M6(t) −
1
t

M7(t) −
1
t

M8(t)

≤ −(β1 + β2)
Λ2

µ2 + 2µ + ε1 + ε2 + γ1 + γ2 +
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2

+
Λ

µ
C2

1
t

∫ t

0

(
I1(s) + I2(s)

)
ds −

1
t

M6(t) −
1
t

M7(t) −
1
t

M8(t),

where C2 = max{β1, β2},

M6(t) =
∫ t

0

σ1S(s)I1(s − δ1(s))
I1(s) + 1

dB1(s)

and

M7(t) =
∫ t

0

σ2S(s)I2(s − δ2(s))
I2(s) + 1

dB2(s)
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are continuous (local) martingales such that M6(0) = 0, M7(0) = 0 and

M8(t) =
∫ t

0

∫
Y

ln
[(

1 +
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1 +
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
Ñ(dt, du)

is local martingale such M8(0) = 0. Furthermore,

[M6,M6](t) =
∫ t

0

σ2
1S2(s)I2

1(s − δ1(s))

(I1(s) + 1)2 ds ≤
σ2

1Λ
4

µ4 t ⇒ lim sup
t→∞

[M6,M6](t)
t

≤
σ2

1Λ
4

µ4 < ∞,

[M7,M7](t) =
∫ t

0

σ2
2S2(s)I2

2(s − δ2(s))

(I2(s) + 1)2 ds ≤
σ2

2Λ
4

µ4 t ⇒ lim sup
t→∞

[M7,M7](t)
t

≤
σ2

2Λ
4

µ4 < ∞,

⟨M8,M8⟩(t) =
∫ t

0

∫
Y

ln2
[(

1+
η1(u)S(t−)I1

(
(t − δ1(t))−

)
I1(t) + 1

)(
1+
η2(u)S(t−)I2

(
(t − δ2(t))−

)
I2(t) + 1

)]
λ(du)ds

≤ ln2
(
1 +

hΛ
µ

)2

λ(Y)t

⇒ lim
t→∞

∫ t

0

d⟨M8,M8⟩(s)
(1 + s)2 ≤ ln2

(
1 +

hΛ
µ

)2

λ(Y) < ∞.

Therefore,

Λ

µ
C2

1
t

∫ t

0

(
I1(s) + I2(s)

)
ds ≥ −

ln (I1(t) + 1)
t

−
ln (I2(t) + 1)

t
+

ln (I1(0) + 1)
t

+
ln (I2(0) + 1)

t
+ β1
Λ

µ
1
t

∫ t

t−δ1(t)
I1(s)ds

− β1
Λ

µ
1
t

∫ 0

−δ1(0)
I1(s)ds + β2

Λ

µ
1
t

∫ t

t−δ2(t)
I2(s)ds − β2

Λ

µ
1
t

∫ 0

−δ2(0)
I2(s)ds + (β1 + β2)

Λ2

µ2

− (2µ + ε1 + ε2 + γ1 + γ2) −
(σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2 +
1
t

M6(t) +
1
t

M7(t) +
1
t

M8(t).

(64)

Hence, taking limes inferior of both sides of (64), using Lemma 2.4, Lemma 2.5, the fact that
− ln (I1(t) + 1), − ln (I2(t) + 1) ≥ − ln Λµ ; −I1(t),−I2(t) ≥ −Λµ and condition (50) leads to

lim inf
t→∞

1
t

∫ t

0

(
I1(s) + I2(s)

)
ds ≥

(β1 + β2)Λ
2

µ2 − (2µ + ε1 + ε − 2 + γ1 + γ2) −
( σ2

1Λ
2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2

Λ
µC2

=

(
R̄

1,2
0 − 1

)(
2µ + ε1 + ε2 + γ1 + γ2 +

( σ2
1Λ

2

2µ2 +
σ2

2Λ
2

2µ2 + h2λ(Y)
)
Λ2

µ2

)
Λ
µC2

> 0 a.s.

Therefore, we proved theorem.

6. Numerical simulations

In this section, we will illustrate theoretical results from Theorems 4.2 and 5.2 using numerical sim-
ulations. We used Euler-Maruyama method for stochastic differential equations with time dependent
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delay and jumps (for mode details see [13]). Codes for numerical simulations were written in Wolfram
Mathematica.

Parameters that describe the spread of computer viruses are explained in Table 2. Their values are taken
from the annual report of Kaspersky antivirus company for year 2023 [17], while some values are assumed
rationally.

Symbol Description Range Units References
Λ number of new units of computers included in

the system equipped with antivirus software
(0,∞) per year assumed

β1 transmission rate for first virus (0, 1) per year [17]
β2 transmission rate for second virus (0, 1) per year [17]
γ recovery rate for susceptible computers due

to antivirus ability of network
(0, 1) per year [17]

µ death rate due to computer break-down (0, 1) per year assumed
δ transition rate from R to S 1 per year assumed
γ1 recovery rate for computers infected with first

virus due to antivirus ability of network
(0, 1) per year [17]

γ2 recovery rate for computers infected with se-
cond virus due to antivirus ability of network

(0, 1) per year [17]

ϵ1 death rate caused by first virus (0, 1) per year [17]
ϵ2 death rate caused by second virus (0, 1) per year assumed
σ1 intensity of first Brownian motion (0, 1) calculated
σ2 intensity of second Brownian motion (0, 1) calculated
η1 intensity of Poisson jump for first virus (0, 1) assumed
η2 intensity of Poisson jump for second virus (0, 1) assumed

Table 2. Parameters involved in stochastic model (3).

Λ β1 β2 γ µ δ γ1 γ2 ϵ1 ϵ2
1 0.0639 0.0457 0.08 0.2 1 0.2633 0.2508 0.000016 0.00000001
σ1 σ2 η1 η2 S0 I0

1 I0
2 R0

0.1708 0.2808 0.012 0.015 0.7 0.2 0.1 0

Table 3. Parameters and initial condition taken in the extinction of disease.

The time period is T = 10 years and step size is∆t = 1
365 . Delay functions are δ1(t) = e−λ1t and δ2(t) = e−λ2t.

For extinction we used λ1 = 7 and λ2 = 5. The intensity of the Poisson process is λ = 2.
In Figure 1 we illustrate the extinction results proved in Theorem 4.2 with model parameters and initial

value given in Table 3. This choice of parameters satisfies the condition (28) of Theorem 4.2. Thus, we can
conclude that both viruses will die out almost surely.

Λ β1 β2 γ µ δ γ1 γ2 ϵ1 ϵ2
1 0.28 0.21 0.06 0.2 1 0.28 0.26 0.000016 0.00000001
σ1 σ2 η1 η2 S0 I0

1 I0
2 R0

0.017 0.08 0.012 0.01 0.4 0.3 0.2 0.1

Table 4. Parameters and initial condition taken in strong persistence in mean of disease.

Time period is T = 10 years and step size is ∆t = 1
365 . Delay functions are δ1(t) = e−λ1t and δ2(t) = e−λ2t.

For persistence in mean we used λ1 = 7 and λ2 = 5. Intensity of Poisson process is λ = 2.
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Figure 1: Extinction of disease - Deterministic (black) and five stochastic trajectories of epidemic model (3)
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Figure 2: Strong persistence in mean of disease - Deterministic (black) and five stochastic trajectories of
epidemic model (3)
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In Figure 2 we illustrate results proved in Theorem 5.2 on strong persistence in mean, with the model
parameters and initial value given in Table 4. This choice of parameters satisfies the condition (50) of
Theorem 5.2. Thus, we can conclude that both viruses will strongly persist in mean almost surely as
stochastic trajectories fluctuate slightly around deterministic ones.
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[10] J. Dordević, B. Jovanović, Dynamical analysis of a stochastic delayed epidemic model with Lévy jumps and regime switching, Journal of
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