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Abstract. We introduce and study some variants of remote sublocales, namely sublocales that are remote
from dense sublocales and those that are ∗remote from dense sublocales. We show that the coframe of
sublocales coincides with the collection of all sublocales remote from the Booleanization. Furthermore, the
supplement of the Booleanization of any locale is the largest sublocale ∗remote from the Booleanization.
We give conditions on localic maps such that their induced localic image and pre-image functions preserve
sublocales that are remote (resp. ∗remote) from dense sublocales. We introduce new types of localic maps
called f -remote preserving maps and study some of their properties.

1. Introduction

In 1962, Fine and Gillman [13] defined a remote point as a point p ∈ βR such that p < N
βR

for any discrete
N ⊆ R. Woods [23], in 1971, showed that in a metric space X, a point p ∈ βX ∖ X is remote if and only if

p < N
βX

for every nowhere dense N ⊆ X. Van Douwen [5], in 1981, gave several characterizations of these
points, and Dube [8], in 2009, investigated remote points in the category of frames. In 1982, Van Mill [18]
defined a remote collection as a collection of closed subsets of a Tychonoff space in which some member of
the collection misses every nowhere dense subset of the space. This was extended to the category of locales
by the author in [20]. A sublocale is remote in case it misses every nowhere dense sublocale. In this article,
we introduce some types of remote sublocales, namely sublocales that are remote from dense sublocales
and those that are ∗remote from dense sublocales.

This article is organized as follows. The first section consists of preliminaries. Sublocales that are
remote from dense sublocales and those that are ∗remote from dense sublocales are introduced in the
second section. We characterize them and compare their classes with the class of remote sublocales. The
third section focuses on a relationship between these variants of remoteness with the Booleanization of a
locale. We show that the supplement of the Booleanization of any locale is the largest sublocale ∗remote
from the Booleanization. The fourth section considers preservation and reflection of remote (resp. ∗remote)
sublocales by localic maps. The work done in this section extends to the fifth section where we discuss
f -remote preserving and f -∗remote preserving localic maps. We give the condition that f -remote preserving
maps are precisely those that preserve remote sublocales.
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The author acknowledges funding from the National Research Foundation of South Africa under Grant 134159.
Email address: sibahlezwide@gmail.com (Mbekezeli Nxumalo)
ORCID iD: https://orcid.org/0000-0002-3413-7174 (Mbekezeli Nxumalo)



M. Nxumalo / Filomat 39:8 (2025), 2587–2601 2588

2. Preliminaries

2.1. Locales and Sublocales
For basic locale/frame theory, see [21] and [15]. By a locale (or frame), we refer to a complete lattice L

satisfying the following infinite distributive property:

a ∧
∨
i∈I

ci =
∨
i∈I

(a ∧ ci)

for all a ∈ L and for all {ci : i ∈ I} ⊆ L. We shall use the terms frame and locale interchangeably, though one
must be quick to point out that the same does not apply for subframe and sublocale. The top element and
the bottom element of a locale L will be denoted by 1L and 0L, respectively, with subscripts dropped when L
is clear from the context. An element p of L is a point provided that p < 1 and a ∧ b ≤ p implies that either
a ≤ p or b ≤ p, for each a, b ∈ L. The pseudocomplement of an element a ∈ L is defined by

a∗ =
∨
{x ∈ L : x ∧ a = 0}.

It satisfies the property: a∧ a∗ = 0. If a∗ = 0, then a is dense and if a∨ a∗ = 1, then a is complemented. A Boolean
locale is one in which every element is complemented. For any a, b ∈ L, we say that a is completely below b in
L and write a ≺≺ b if there are ar ∈ L (r rational, 0 ≤ r ≤ 1) such that a0 = a, a1 = b and ar ≺ as for r < s. A
locale is completely regular if each of its elements is the join of elements completely below it.

A sublocale of a locale L is a subset S ⊆ L such that (i) S is closed under all meets, and (ii) x → s ∈ S for
all x ∈ L and s ∈ S, where→ is the Heyting operation on L satisfying:

a ≤ b→ c if and only if a ∧ b ≤ c

for every a, b, c ∈ L. We denote by S(L) the coframe of sublocales of a locale L. The smallest sublocale of L is
the sublocale O = {1}. A sublocale S of L is void if S = O, otherwise it is non-void. We shall use the prefix S-
for localic properties defined on a sublocale S of L. A sublocale S ⊆ L is complemented if it has a complement
in S(L). We denote by

L ∖ S =
∨
{T ∈ S(L) : T ∩ S = O}

the supplement of a sublocale S ⊆ L. The sublocales

cL(a) = {x ∈ L : a ≤ x} and oL(a) = {a→ x : x ∈ L}

are, respectively, the closed and the open sublocales induced by a ∈ L, and are complements of each other. To
refer to a closed and open sublocale of a sublocale S of L, we shall, respectively, write cS(a) and oS(a). The
closure of S ∈ S(L) is given by

S = c
(∧

S
)

and S is dense if S = L (equivalently, if 0L ∈ S). We shall write N
S

for the closure of a sublocale N taken in a
sublocale S of a locale L. The Booleanization of L is the sublocale B(L) = {x → 0 : x ∈ L}, and is the smallest
dense sublocale of L. A noteworthy result about dense sublocales is that pseudocomplementation on a
dense sublocale is precisely that in the locale. This is so because, if A is a dense sublocale of L and x ∈ A,
then writing x∗A for the pseudocomplement of x in A, we have the equalities

x∗A = x→A 0A = x→ 0L = x∗.

This means BS = BL for a dense sublocale S of L. By Plewe [22], A sublocale S of L is nowhere dense if
S ∩BL = O. By Dube [6], for each a ∈ L, cL(a) is nowhere dense if and only if a is dense. More generally, a
sublocale N of a locale L is nowhere dense if and only if

∧
N is dense in L, by [20].

A localic map is an infima preserving map between locales such that the corresponding left adjoints
preserve finite meets. Associated with every localic map is its left adjoint called a frame homomorphism
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which preserves binary meets and arbitrary joins. We shall write f : L → M for a localic map and f ∗ for
its left adjoint. On the other hand, when α is given as a frame homomorphism we shall write α∗ for the
corresponding localic map or right adjoint (of α). A frame homomorphism f ∗ : M → L is called dense in
case it maps only the bottom element to the bottom element; a quotient map provided that it is surjective; an
extension if it is a dense quotient map; and closed if f (x ∨ f ∗(y)) = f (x) ∨ y for all x ∈ L and y ∈M. Clearly, a
localic map f : L→M is dense if and only if f [S] is dense in M for every dense sublocale S of L. According
to Dube [7], a nowhere dense map is a frame homomorphism f ∗ : M → L in which for each non-zero x ∈ M
there is a non-zero y ∈ M with y ≤ x such that f ∗(y) = 0L. A nucleus is a mapping ν : L → L satisfying (i)
a ≤ ν(a), (ii) a ≤ b implies ν(a) ≤ ν(b), (iii) νν(a) = ν(a), and (iv) ν(a ∧ b) = ν(a) ∧ ν(b) for all a, b ∈ L. The set
Fix(ν) = {a ∈ L : ν(a) = a} is a locale with meets in L. Every sublocale S ⊆ L is associated with the quotient
map νS : L→ S defined by

νS(a) =
∧
{s ∈ S : a ≤ s}.

For each a ∈ L and S ∈ S(L), oS(νS(a)) = S ∩ oL(a) and cS(νS(a)) = S ∩ cL(a).
Each localic map f : L→M induces the maps

f [−] : S(L)→ S(M) and f−1[−] : S(M)→ S(L)

which are called the localic image function induced by f and the localic preimage function induced by f ,
respectively. The maps f [−] and f−1[−] form an adjunction.

2.2. On βL, λL and υL

Refer to [1, 2, 10, 16] for more details on βL, λL and υL. We represent by βL the Stone-Čech compactification
of a completely regular locale L. The frame homomorphism βL : βL→ L, defined by I 7→

∨
I, is an extension

with its right adjoint denoted by rL. For any localic map f : L → M between completely regular locales L
and M, there is a localic map β( f ) : βL→ βM defined by

β( f ) : I 7→
∨
{J ∈ βM : h(J) ⊆ I}

with its left adjoint β( f )∗ given by

β( f )∗ : J 7→ {x ∈ L : x ≤ f ∗(y) for some y ∈ J}.

A cozero element of a locale L is an element a ∈ L satisfying

a =
∨
{xn : xn ≺≺ a}

for some sequence (xn)n∈N in L. We use Coz L to denote the cozero part of L. By a σ-ideal of a locale L we
refer to an ideal of L which is closed under countable joins. The regular Lindelöf reflection of L is the locale of
σ-ideals of Coz L and is denoted by λL. The join map λL : λL→ L is an extension. We define the extension
kL : βL→ λL by I 7→ ⟨I⟩σ, where ⟨·⟩ signifies σ-ideal generation in Coz L.

For a completely regular locale L, the realcompact reflection of L is the locale υL defined to be Fix(ℓ), where

ℓ : λL→ λL, I 7→
[∨

I
]
∧

∧
{P ∈ Pt(λL) : I ≤ P}.

The join map vL : vL→ L is an extension and ℓL : λL→ υL is an extension effected by ℓ.
When βL is regarded as the locale of regular ideals of Coz L, we get the following commuting diagram
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in the category of completely regular locales whose morphisms are localic maps between them.

L
(υL)∗

$$
(λL)∗

��
rL

��

f // M
(υM)∗

yy

rM

��

(λL)∗

��

υL
υ( f ) //

(ℓL)∗

��

υM

(ℓM)∗

��
λL

λ( f )
//

(κL)∗
zz

λM

(κM)∗
%%

βL
β f

// βM

(1)

By a γ-lift we mean the localic morphism γ( f ) : γL→ γM, where γ ∈ {β, λ, υ}.

3. Remoteness from a dense sublocale

This section focuses on some variants of remoteness which are defined with respect to dense sublocales.
We remind the reader that prefix S- will be used to indicate a localic property defined in a sublocale S of

a locale L. For instance, if S is a sublocale of a locale L and N ∈ S(S), then S-nowhere dense N means that
N is nowhere dense in a sublocale S of L.

Definition 3.1. Let S ⊆ L be a dense sublocale of L. Then

1. T ∈ S(L) is remote from S if T ∩N = O for every S-nowhere dense N ∈ S(S).
2. A sublocale T ⊆ L ∖ S is *remote from S if T ∩N = O for every S-nowhere dense N ∈ S(S).

We note some examples.

Example 3.2. (1) O is remote from every dense sublocale of a locale L.
(2) Recall from [8] that a point I of βL is remote provided that I ∨ r(h∗(0)) = ⊤ for every nowhere dense quotient

map h : L→M. It is easy to see that a point I ∈ βL is remote if and only if c(I) is remote from L.

(3) In Top, we say that A ⊆ X ∖ Y, where Y is a dense subspace of X, is ∗remote from Y in case A ∩ N
X
= ∅ for

all nowhere dense subsets N of Y. For a Tychonoff space X, a point p ∈ βX ∖ X is remote if and only if {p} is ∗remote
from X.

(4) Consider the three-element chain 3 = {1, 0, a}. Clearly, o3(a) is a dense sublocale of 3 whose supplement
contains c3(a). We also have that c3(a) is ∗remote from o3(a). In fact, by [19, Proposition 5.3.], c3(a) is remote from
o3(a) and is also a remote sublocale of o3(a).

(5) For each A,B ∈ S(L), if A ⊆ B and B is remote from S, then A is remote from S.

Denote by Srem(L ⋉ S) and ∗Srem(L ⋉ S) the collections of sublocales that are remote and ∗remote from a
dense sublocale S, respectively.

We characterize members of Srem(L ⋉ S) and ∗Srem(L ⋉ S). Recall that for each S ∈ S(L) and any a ∈ S,
cS(a) = cL

(∧
(cS(a))

)
= cL(a).

Theorem 3.3. Let S ∈ S(L) be dense and A ∈ S(L) (resp. A ∈ S(L ∖ S)). The following statements are equivalent.

1. A ∈ Srem(L ⋉ S) (resp. A ∈ ∗Srem(L ⋉ S)).
2. For all S-dense x ∈ S, A ∩ cL(x) = O.
3. For all S-dense x ∈ S, A ⊆ oL(x).
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4. For every S-dense x ∈ S, νA(x) = 1.

Proof. (1)⇒ (2): Let x ∈ S be S-dense. Then cS(x) is S-nowhere dense. By (1),

O = A ∩ cS(x) = A ∩ cL(x).

(2)⇒ (3): This follows since for all x ∈ S, A ∩ cL(x) = O if and only if A ⊆ oL(x).
(3)⇒ (4): This is true because for any x ∈ S, νA(x) = 1 if and only if A ⊆ oL(x).
(4)⇒ (1): Let N ∈ S(S) be S-nowhere dense. Then

∧
N is S-dense. By (4), νA (

∧
N) = 1 so that

O = cA
(
νA

(∧
N
))
= A ∩ cL

(∧
N
)
= A ∩N

as required.

Comment 3.4. The equivalence of (4) in Theorem 3.3 tells us that, A is remote (resp. *remote) from S if and only if
it is contained in every open dense sublocale of L induced by an element of S. The characterization (3) in Theorem 3.3
is reminiscent of the characterization of the remote sublocales of L as precisely those that are contained in every dense
sublocale of L.

The preceding theorem leads us to the following example of a sublocale of L which is remote from a
dense sublocale S.

Example 3.5. Set
Nd(S) =

∨
{N ∈ S(S) : N is S-nowhere dense}.

If S is a dense sublocale of L, then the sublocale L∖Nd(S) is remote from S. To see this, choose an S-dense x ∈ S, then
cS(x) is S-nowhere dense and contained in Nd(S), so that cS(x) = cL(x) ⊆ Nd(S). Therefore cL(x)∩ (L∖Nd(S)) = O.
By Theorem 3.3(2), L ∖Nd(S) is remote from S.

Observe that L∖Nd(S) may be different from O. Consider a dense sublocale S ∈ S(L) where Nd(S) is S-nowhere
dense and L , O (for instance, a locale whose Booleanization is complemented, see [11, Corollary 4.16]). Since Nd(S)

is the largest S-nowhere dense sublocale and its closure in S is S-nowhere dense, Nd(S) = Nd(S)
S

making it S-closed
nowhere dense. Because S is dense in L, Nd(S) is nowhere dense in L so that Nd(S) is nowhere dense in L. Therefore
L , Nd(S) which means that L ∖Nd(S) , O.

Since the setSrem(L⋉S) does not restrict where its members come from, we have the following immediate
connection between Srem(L ⋉ S) and ∗Srem(L ⋉ S).

Proposition 3.6. For every dense sublocale S of a locale L, ∗Srem(L ⋉ S) ⊆ Srem(L ⋉ S).

Observation 3.7. For a non-void Boolean locale L, we have that ∗Srem(L ⋉ L) ⊂ Srem(L ⋉ L). This is because
L ∈ Srem(L ⋉ L) but L is not contained in L ∖ L = O.

Remark 3.8. In an attempt to obtain an equality in Proposition 3.6, we start by recalling from [22] that a sublocale is
rare if its supplement is the whole locale. Restricting our sublocales to dense and rare sublocales yields the following:

If S is a dense and rare sublocale of a locale L, then ∗Srem(L ⋉ S) = Srem(L ⋉ S).

Sublocales which are simultaneously dense and rare do exist. For instance, recall that Plewe in [22] defines a locale to
be dense in itself if every Boolean sublocale has a dense supplement. He then shows that a locale is dense in itself if
and only if its Booleanization is rare. The locale O(R), where R is the set of real numbers, is an example of a dense in
itself locale. This follows from the fact that the space R is dense in itself (because it has no isolated points) and since,
according to [22], every sober space is dense in itself if and only if its locale of opens is dense in itself, the real line
being sober and dense in itself makes O(R) dense in itself. So, the Booleanization of OR is both dense and rare.
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We have the following relationship between the collection Srem(L) = Srem(L ⋉ L) of all remote sublocales of
a locale L and Srem(L ⋉ S).

Proposition 3.9. Let L be a locale. Then Srem(L) ⊆ Srem(L ⋉ S) for every dense sublocale S of L.

Proof. This is true because a remote sublocale of L misses the closure of every nowhere dense sublocale of
L, and hence misses the closure of every nowhere dense sublocale of S since S is a dense sublocale of L.

The following result shows a relationship between the collections Srem(S) = Srem(S ⋉ S) and Srem(L ⋉ S).

Proposition 3.10. Let S be a dense sublocale of a locale L. Then

S(S) ∩ Srem(L ⋉ S) = Srem(S).

Proof. S(S) ∩ Srem(L ⋉ S) ⊆ Srem(S): Let A ∈ S(S) ∩ Srem(L ⋉ S) and choose an S-nowhere dense N ∈ S(S).
Then A ∩N = O which implies that A ∩N = O. Thus A ∈ Srem(S).

Srem(S) ⊆ S(S) ∩Srem(L ⋉ S): Let A ∈ Srem(S) and choose an S-nowhere dense N. Then N
S

is S-nowhere
dense so that O = A ∩N

S
= A ∩N ∩ S = A ∩N. Thus A ∈ S(S) ∩ Srem(L ⋉ S).

We close this section with a discussion of elements inducing closed sublocales that are remote and
∗remote from dense sublocales.

Set

Rem(L ⋉ S) = {a ∈ L : cL(a) ∈ Srem(L ⋉ S)}

and

∗Rem(L ⋉ S) = {a ∈ L : cL(a) ∈ ∗Srem(L ⋉ S)}.

We give the following proposition, the proof of which follows easily from the definitions.

Proposition 3.11. Let S ∈ S(L) be dense.

1. a ∈ Rem(L ⋉ S) iff a ∨ x = 1 for all dense x ∈ S.
2. For cL(a) ⊆ L ∖ S, a ∈ ∗ Rem(L ⋉ S) iff a ∨ x = 1 for all dense x ∈ S.

4. Connection between the Booleanization and Remoteness from dense sublocales

We begin this section with the following observation:

Proposition 4.1. Let L be a locale. Then BL is remote from every dense sublocale of L.

Proof. This follows since BL is a remote sublocale of L so that, by Proposition 3.9, it is remote from every
dense sublocale of L.

The above result tells us that BL ∈ Srem(L ⋉ BL). In what follows we show that Srem(L ⋉ BL) is in fact
the whole coframe S(L). Observe that if K is a dense sublocale of L, then BL = BK, as a consequence, a
sublocale of K is nowhere dense in K if and only if it is nowhere dense in L.

Proposition 4.2. Let L be a locale. Then Srem(L ⋉BL) = S(L).

Proof. If A ∈ S(L) and N ∈ S(BL) is nowhere dense in BL, then N = O which implies that A ∩N = O. Thus
A ∈ Srem(L ⋉ BL). Hence S(L) ⊆ Srem(L ⋉ BL), making Srem(L ⋉ BL) = S(L) since the other containment
always holds.
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Observation 4.3. Using Proposition 4.2 and the fact that L ∈ Srem(L) if and only if L is Boolean (from [20, Proposition
3.5.]), it is easy to see that for a non-Boolean locale L, L ∈ Srem(L ⋉ BL) but L < Srem(L). This is a particular case
where we do not have equality in Proposition 3.9. However, Srem(L ⋉ L) = Srem(L).

It turns out that the Booleanization is the only sublocale remote from itself, as we show below.

Theorem 4.4. Let S be a dense sublocale of L. The following statements are equivalent.

1. S ∈ Srem(L ⋉ S).
2. S = BL.
3. L is remote from S.

Proof. (1) ⇒ (2): Let N be S-nowhere dense. Then since S ∈ Srem(L ⋉ S), S ∩ N = O which implies that
O = S ∩N = N. This makes S Boolean. So, S = BL because the only dense Boolean sublocale of L is BL.

(2)⇒ (3): Since O is the only nowhere dense sublocale ofBL, we have that L∩N = O for every nowhere
dense sublocale N of BL = S.

(3)⇒ (1): Let N be a nowhere dense sublocale of S. Since L is remote from S, L∩N = O, making N = O.
Hence S ∩N = O so that S ∈ Srem(L ⋉ S).

We showed in [20] that the Booleanization is the largest remote sublocale of a locale. We work towards
establishing a relationship between the Booleanization and the largest sublocale that is remote from dense
sublocales. Using Theorem 3.3(2), one can easily see that the join of remote sublocales is remote. This tells
us that every locale has the largest sublocale which is remote from a specific dense sublocale. For S ∈ S(L)
dense in L, set

Rs(L ⋉ S) =
∨
{A ∈ S(L) : A is remote from S}.

Remark 4.5. Proposition 4.2 tells us that L = Rs(L ⋉BL).

Lemma 4.6. Let L be a locale. If A ∈ Srem(L ⋉ S), then A ∩ S ∈ Srem(L).

Proof. Assume that A ∈ Srem(L⋉S) and let N be nowhere dense in L. Since N∩S ⊆ N, N∩S is nowhere dense
in L which in turns makes it S-nowhere dense. By hypothesis, A ∩ S ∩N = O. This makes (A ∩ S) ∩N = O.
Thus A ∩ S ∈ Srem(L).

Theorem 4.7. For a dense sublocale S of a locale L, Rs(L ⋉ S) ∩ S = BL.

Proof. BL ⊆ Rs(L⋉S)∩S: This is true becauseBL is remote from S andBL ⊆ S by density of S. For the other
containment, using Lemma 4.6 we get that Rs(L ⋉ S) ∩ S ∈ Srem(L). BL being the largest remote sublocale
of L gives Rs(L ⋉ S) ∩ S ⊆ BL. Thus Rs(L ⋉ S) ∩ S = BL.

Observation 4.8. The statement “Rs(L ⋉ S) = BL for every dense sublocale S of L” is not true for a non-Boolean
locale L. Otherwise, BL = Rs(L ⋉BL) = L where the latter equality follows from Remark 4.5, which is not possible.

We noticed in Example 3.5 that L ∖Nd(S) is remote from a dense sublocale S of L. A question about a
relationship between the sublocales L∖Nd(S) and Rs(L ⋉ S) arises. We address this in the following result.

Proposition 4.9. Let S be a dense sublocale of a locale L. The following statements are equivalent:

1. Rs(L ⋉ S) = L ∖Nd(S).
2. Nd(S) is S-nowhere dense.

Proof. (1) ⇒ (2): Assume that Rs(L ⋉ S) = L ∖Nd(S). Since BL ⊆ Rs(L ⋉ S), we have that BL ⊆ L ∖Nd(S).
ThereforeBL∩Nd(S) = O which implies thatBL∩Nd(S) = O, making

∧
Nd(S) dense in L. But S is dense,

so νS (
∧

Nd(S)) =
∧

Nd(S) is S-dense. It follows that Nd(S) is S-nowhere dense.
(2) ⇒ (1): We show that Rs(L ⋉ S) ⊆ L ∖Nd(S). Nd(S) being S-nowhere dense implies that Rs(L ⋉ S) ∩

Nd(S) = O. This gives Rs(L ⋉ S) ⊆ L ∖Nd(S) as required.
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We noticed in Observation 4.8 that for a non-Boolean locale L, BL , Rs(L ⋉ BL). For ∗remoteness, we
show in Theorem 4.12 that the supplement ofBL, for any locale L, is the largest sublocale ∗remote fromBL.

Just like in the case of Rs(L ⋉ S), set

∗Rs(L ⋉ S) =
∨
{A ∈ S(L) : A is ∗remote from S}

for a dense sublocale S of L.

Lemma 4.10. ∗Srem(L ⋉BL) = {T ∈ S(L) : T ⊆ L ∖BL} for every locale L.

Observation 4.11. (1) From Lemma 4.10, observe that when L is not dense in itself, we get another case where
∗
Srem(L ⋉ S) , Srem(L ⋉ S). This is because we have that L , L ∖BL so that by Proposition 4.2, L ∈ Srem(L ⋉BL)

but L < ∗Srem(L ⋉BL).
(2) A locale is dense in itself if and only if it is ∗remote from its Booleanization: Observe that L is dense in itself if

and only if BL is rare if and only if L ⊆ L ∖BL if and only if L ∈ {T ∈ S(L) : T ⊆ L ∖BL} = ∗Srem(L ⋉BL), where
the last equality holds by Lemma 4.10.

Theorem 4.12. Let L be a locale. Then ∗Rs(L ⋉BL) = L ∖BL.

Proof. This is true because, by Lemma 4.10, L ∖BL ∈ ∗Srem(L ⋉BL), making L ∖BL ⊆ ∗Rs(L ⋉BL). Also all
∗remote sublocales (including ∗ Rs(L ⋉BL)) belong to the set {T ∈ S(L) : T ⊆ L ∖BL}.

5. Preservation and reflection of sublocales that are remote (resp. *remote) from dense sublocales

In this section we discuss localic maps that send back and forth the sublocales introduced in Definition
3.1.

Consider a commuting diagram

S T

L M

1

α ω

f

(2)

where S,T,L and M are locales, f and 1 are localic maps and the downward morphisms are dense injective
localic maps. Our discussion will assume the setting we just described. We commented in the preliminaries
that a localic map k : P→ Q is dense if and only if k[P] is a dense sublocale of Q. So, α[S] andω[T] are dense
sublocales of L and M, respectively. Since for a quotient map v : W → Y, v∗ : Y→ v∗[Y] is an isomorphism,
we will sometimes write S and T for the sublocales α[S] and ω[T], respectively.

For ∗remoteness, we note that, A∩α[S] = O implies A ⊆ L∖α[S] but A ⊆ L∖α[S] does not always imply
that A misses α[S] unless α[S] is complemented. We will sometimes treat these cases differently.

We start by synthesizing a description of localic maps that preserve remoteness and ∗remoteness from
dense sublocales. For the following result, we recall from [12] that a localic map f : L→M takes A-remainder
to B-remainder if f [L ∖ A] ⊆ M ∖ B where A ∈ S(L), B ∈ S(M). We shall write f : L → M takes S-remainder
to T-remainder to mean that f takes α[S]-remainder to ω[T]-remainder. Recall from [17] that a frame
homomorphism f ∗ : M→ L is said to be weakly closed in case a∨ f ∗(b) = 1 implies f (a)∨ b = 1 for every a ∈ L
and b ∈ M. Banaschewski and Pultr [3] call a frame homomorphism f ∗ : M → L skeletal if f ∗(a∗∗) ≤ ( f ∗(a))∗∗

for all a ∈ M. We shall make use of the following equivalent condition of a skeletal frame homomorphism
which was proved in the cited paper:

f ∗ sends dense elements to dense elements.
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Proposition 5.1. Assume that 1∗, for 1 in diagram 2, is skeletal and f ∗ ◦ ω = α ◦ 1∗. Then

1. f [Srem(L ⋉ S)] ⊆ Srem(M ⋉ T).
2. If f ∗ is weakly closed, then f [Rem(L ⋉ S)] ⊆ Rem(M ⋉ T).

Proof. (1) Let A ∈ Srem(L ⋉ S) and choose an ω[T]-dense y ∈ ω[T]. Then y = ω(t) for some t ∈ T. Because 1∗

is skeletal, we have that 1∗(t) is S-dense so that α(1∗(t)) is α[S]-dense since α : S→ α[S] is an isomorphism.
Therefore O = A∩cL(α(1∗(t)) = A∩cL( f ∗(ω(t)) where the latter equality follows since f ∗◦ω = α◦1∗. Therefore

A ⊆ oL( f ∗(ω(t))) = f−1[oM(ω(t))] = f−1[oM(y)].

We get that f [A] ⊆ f [ f−1[oM(y)]] ⊆ oL(y). This tells us that f [A] is contained in every open sublocale induced
by an ω[T]-dense element, so by Theorem 3.3(3), f [A] ∈ Srem(M ⋉ T).

(2) Let x ∈ Rem(L ⋉ S) and choose an ω[T]-dense t ∈ ω[T]. Therefore t = ω(y) for some y ∈ T.
Since 1∗ is skeletal, 1∗(y) is S-dense, making α(1∗(y)) α[S]-dense. It follows that α(1∗(y)) ∨ x = 1. Because
α ◦ 1∗ = f ∗ ◦ ω, f ∗(ω(y)) ∨ x = 1. The weakly closedness of f ∗ implies that 1M = ω(y) ∨ f (x) = t ∨ f (x). Thus
f (x) ∈ Rem(M ⋉ T).

Observation 5.2. In terms of γ-lifts, the condition f ∗ ◦ω = α ◦ 1∗ on f resembles that of a γ-map which was defined
in [10] as a frame homomorphism t : M→ L that satisfies γ(t) ◦ (γM)∗ = (γL)∗ ◦ t.

Proposition 5.3. If the map 1∗, for 1 in diagram 2, is skeletal, f ∗◦ω = α◦1∗ and f takes S-remainder to T-remainder,
then:

1. f [∗Srem(L ⋉ S)] ⊆ ∗Srem(M ⋉ T).
2. If f ∗ is weakly closed, then f [∗Rem(L ⋉ S)] ⊆ ∗Rem(M ⋉ T).

Proof. With the assumption that f takes S-remainder to T-remainder, it is clear that A ⊆ L ∖ α[S] implies
f [A] ⊆ f [L∖ α[S]] ⊆M∖ω[T] for all A ∈ S(L). This together with Proposition 5.1(1)&(2) show that both (1)
and (2) hold.

Observation 5.4. For Proposition 5.3, in the case where α[S] is complemented, we replace f takes S-remainder to
T-remainder with the condition that f is injective and f [α[S]] = ω[T]. From this we get that A ⊆ L ∖ α[S] implies
A ∩ α[S] = O. Therefore

O = f [O] = f [A ∩ α[S]] = f [A] ∩ f [α[S]]

so that f [A] ⊆M ∖ f [α[S]] =M ∖ ω[T].

We return to descriptions of localic maps that reflect and preserve the variants of remoteness introduced
in Definition 3.1. By an abuse of language, we shall say that a localic map is skeletal provided that it sends
dense elements to dense elements.

Proposition 5.5. Assume that the morphism 1 in diagram 2 is skeletal. Then

1. f [A] ∈ Srem(M ⋉ T) implies A ∈ Srem(L ⋉ S) for every A ∈ S(L).
2. f (x) ∈ Rem(M ⋉ T) implies x ∈ Rem(L ⋉ S) for all x ∈ L.

Proof. (1) Assume that f [A] ∈ Srem(M ⋉ T) and let a ∈ α[S] be α[S]-dense. Then a = α(x) for some x ∈ S
where such x is S-dense. Since 1 is skeletal, 1(x) is T-dense so that ω(1(x)) is ω[T]-dense. It follows that
f [A] ⊆ o(ω(1(x))) which implies f [A] ⊆ oM( f (α(x))) because k ◦ 1 = f ◦ α. Therefore

A ⊆ f−1[ f [A]] ⊆ f−1[oM( f (α(x)))] = oL( f ∗( f (α(x)))) ⊆ oL(α(x)) = oL(a).

Thus A ∈ Srem(L ⋉ S).
(2) This is an adaptation of the proof of (1) above.

Proposition 5.6. If 1 in diagram 2 is skeletal, ω[T] is a complemented sublocale of M and f−1[ω[T]] = α[S], then:
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1. f [A] ∈ ∗Srem(M ⋉ T) implies A ∈ ∗Srem(L ⋉ S) for every A ∈ S(L).
2. f (x) ∈ ∗Rem(M ⋉ T) implies x ∈ ∗Rem(L ⋉ S) for all x ∈ L.

Proof. We only show that f [A] ⊆M∖ω[T] implies A ⊆ L∖ α[S]. Observe that for complemented ω[T] in M
with f−1[ω[T]] = α[S],

f [A] ⊆M ∖ ω[T] ⇔ f [A] ∩ ω[T] = O
⇒ A ∩ f−1[ω[T]] = O
⇔ A ∩ α[S] = O
⇒ A ⊆ L ∖ α[S].

for all A ∈ S(L).

Proposition 5.7. Suppose that the localic map 1 in diagram 2 is skeletal. Then:

1. f−1[Srem(M ⋉ T)] ⊆ Srem(L ⋉ S).
2. f ∗[Rem(M ⋉ T)] ⊆ Rem(L ⋉ S).

Proof. (1) Let A ∈ Srem(M ⋉ T) and choose an S-dense a ∈ S. Then a = α(x) for some x ∈ S which is
S-dense. 1(x) is T-dense because 1 is skeletal. It follows that A ⊆ oM(ω(1(x))) since ω(1(x)) is ω[T]-dense and
A ∈ Srem(M ⋉ T). Therefore

f−1[A] ⊆ f−1[oM(ω(1(x)))] = o( f ∗(ω(1(x)))) = oM( f ∗( f (α(x)))) ⊆ oL(α(x)) = oL(x)

making f−1[A] ∈ Srem(L ⋉ S).
(2) Proof follows similar sketch of the proof of (1).

Proposition 5.8. Suppose that the localic map 1 in diagram 2 is skeletal, f−1[ω[T]] = α[S] andω[T] is complemented
in M, then:

1. f−1[∗Srem(M ⋉ T)] ⊆ ∗Srem(L ⋉ S).
2. f ∗[∗Rem(M ⋉ T)] ⊆ ∗Rem(L ⋉ S).

Proof. Assume that f−1[ω[T]] = α[S] and ω[T] is complemented in M. We only show that A ⊆ M ∖ ω[T]
implies f−1[A] ⊆ L∖α[S] which is needed for both (1) and (2). We have that A ⊆M∖ω[T] gives A∩ω[T] = O.
Therefore O = f−1[A] ∩ f−1[ω[T]] = f−1[A] ∩ α[S], which implies that f−1[A] ⊆ L ∖ α[S].

Proposition 5.9. If 1∗, for 1 in diagram 2 is skeletal, α ◦ 1∗ = f ∗ ◦ ω and f [−] is surjective, then:

1. f−1[A] ∈ Srem(L ⋉ S) implies A ∈ Srem(M ⋉ T) for all A ∈ S(M).
2. If f takes S-remainder to T-remainder, then f−1[A] ∈ ∗Srem(L ⋉ S) implies A ∈ ∗Srem(M ⋉ T) for every A ∈ S(M).

Proof. (1) Let A ∈ S(M) be such that f−1[A] ∈ Srem(L ⋉ S) and choose an ω[T]-dense b ∈ ω[T]. Then b = ω(x)
for some x ∈ T with x a T-dense element. The skeletalness of 1∗ implies that 1∗(x) is S-dense so that α(1∗(x))
is α[S]-dense. Therefore

O = f−1[A] ∩ cL(α(1∗(x))) = f−1[A] ∩ cL( f ∗(ω(x))) = f−1[A] ∩ f−1[cM(ω(x))] = f−1[A ∩ cM(ω(x))].

Since f [−] is surjective, O = f [ f−1[A ∩ cM(ω(x))]] = A ∩ cM(ω(x)) = A ∩ cM(b). Thus A ∈ Srem(M ⋉ T).
(2) We only show that f−1[A] ⊆ L ∖ α[S] implies A ⊆ L ∖ α[S]. Observe that

f−1[A] ⊆ L ∖ α[S] ⇒ f [ f−1[A]] ⊆ f [L ∖ α[S]] ⇒ A ⊆M ∖ ω[T]

which proves the result.

Proposition 5.10. Assume that 1∗, for 1 in diagram 2 is skeletal and one of the following statements holds:
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(a) f ∗ is weakly closed and 1 is surjective.
(b) α ◦ 1∗ = f ∗ ◦ ω and f is surjective.

Then

1. For each x ∈M, f ∗(x) ∈ Rem(L ⋉ S) implies x ∈ Rem(M ⋉ T).
2. If f [L ∖ α[S]] ⊆M ∖ ω[T], then f ∗(x) ∈ ∗Rem(L ⋉ S) implies x ∈ ∗Rem(M ⋉ T) for all x ∈M.

Proof. (1) Suppose that f ∗ is weakly closed, 1 is surjective and let T ∈ S(T) be T-dense. Then t = ω(b) for
some b ∈ T which is T-dense. Then 1∗(b) is S-dense since 1∗ is skeletal. Because f ∗(x) ∈ Rem(L ⋉ S), we get
that

f ∗(x) ∨ α(1∗(b)) = 1. (3)

The weakly closedness of f ∗ gives x ∨ f (α(1∗(b))) = 1. Therefore

1 = x ∨ ω(1(1∗(b))) = x ∨ ω(b) = x ∨ t

where the second equality holds since 1 is surjective. Thus x ∈ Rem(M ⋉ T).
Assume that α ◦ 1∗ = f ∗ ◦ω and f is surjective. Then from equation 3, we get that f ∗(x)∨ f ∗(t) = 1 which

implies that
f ( f ∗(x ∨ t)) = f ( f ∗(x) ∨ f ∗(t)) = f (1) = 1

so that by surjectivity of f , x ∨ t = 1 making x ∈ Rem(M ⋉ T).
(2) Can be deduced from Proposition 5.9(2) and (1) above.

6. f -remote preserving and f -∗remote preserving maps

In this section, we pay a closer attention to localic maps with the properties given in Proposition 5.1(1)
and Proposition 5.3(1). We still make use of diagram 2.

We give the following definition.

Definition 6.1. We call a map 1 in diagram 2 f -remote preserving if f [Srem(L ⋉ S)] ⊆ Srem(M ⋉ T) and f -∗remote
preserving if f [∗Srem(L ⋉ S)] ⊆ ∗Srem(M ⋉ T).

Since BL ∈ Srem(L ⋉ S) for every dense sublocale S of L, in the next result, we characterize f -remote
preserving maps in terms of the Booleanization of a locale. We also include, in the same result, a character-
ization in terms of the largest sublocale remote from a given dense sublocale. We recall that if w : P→ Q is
a dense injective localic map, then for all x ∈ P, x is P-dense if and only if w(x) is Q-dense.

Theorem 6.2. Suppose that f ∗ ◦ ω = α ◦ 1∗. The following statements are equivalent.

1. 1 is f -remote preserving.
2. f [BL] ∈ Srem(M ⋉ T).
3. f [Rs(L ⋉ S)] ∈ Srem(M ⋉ T).
4. f [Rs(L ⋉ S)] ⊆ Rs(M ⋉ T).

Proof. (1)⇒ (2): Since BL is remote from every dense sublocale of L and α[S] is a dense sublocale of L, BL
is remote from α[S]. By (1), f [BL] ∈ Srem(M ⋉ T).

(2) ⇒ (3): Let a ∈ ω[T] be ω[T]-dense. Then a = ω(x) for some x ∈ T. By hypothesis, f [BL] ⊆ oM(ω(x)).
Therefore BL ⊆ f−1[oM(ω(x))] = oL[ f ∗(ω(x))]. Since f ∗ ◦ ω = α ◦ 1∗, BL ⊆ oL[α(1∗(x))], making α(1∗(x))
L-dense so that 1∗(x) is S-dense and hence α(1∗(x)) is α[S]-dense. But Rs(L ⋉ S) is remote from α[S], so
Rs(L ⋉ S) ⊆ oL[α(1∗(x))]. Therefore

f [Rs(L ⋉ S)] ⊆ f [o(α(1∗(x)))] = f [oL( f ∗(ω(x)))] = f [ f−1[oM(ω(x))]] ⊆ oM(ω(x)) = oM(a).
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Thus f [Rs(L ⋉ S)] ∈ Srem(M ⋉ T).
(3)⇒ (4): This is true because Rs(M ⋉ T) is the largest sublocale remote from ω[T].
(4)⇒ (1): Let A ∈ Srem(L⋉S). Then A ⊆ Rs(L⋉S) so that f [A] ⊆ f [Rs(L⋉S)]. But f [Rs(L⋉S)] ⊆ Rs(M⋉T),

so f [A] ⊆ f [Rs(M ⋉ T)]. Since sublocales contained in members of Srem(M ⋉ T) are remote from ω[T], f [A]
is remote from ω[T]. Thus 1 is f -remote preserving.

We give the following characterization of f -∗remote preserving maps.

Proposition 6.3. Assume that f ∗ ◦ ω = α ◦ 1∗. The following statements are equivalent.

1. 1 is f -∗remote preserving.
2. f [∗Rs(L ⋉ S)] is ∗remote from ω[T].
3. f [∗Rs(L ⋉ S)] ⊆ ∗Rs(M ⋉ T).

Proof. (1)⇒ (2): This is true because ∗Rs(L ⋉ S) ∈ ∗Srem(L ⋉ S).
(2)⇒ (3): Trivial.
(3)⇒ (1): Proof is similar to that of Theorem 6.2 (4)⇒ (1).

In Proposition 6.5 below, we explore a relationship between f -remote preservation and preservation of
remote sublocales. We give the following lemma which will be useful in proving the result.

Lemma 6.4. The following statements hold.

1. A ∈ Srem(S) iff α[A] ∈ Srem(L ⋉ S).
2. A ∈ Srem(L ⋉ S) implies α−1[A] ∈ Srem(S).

Proof. (1) Recall from Proposition 3.10 that Srem(K) = Srem(L⋉K)∩S(K) for each dense K ∈ S(L). Therefore
α[A] ∈ Srem(α[S]) if and only if α[A] ∈ Srem(L⋉ S)∩S(α[S]). Since α : S→ α[S] is an isomorphism, it is easy
to see that A ∈ Srem(S) if and only if α[A] ∈ Srem(α[S]) if and only if α[A] ∈ Srem(L ⋉ S) ∩ S(α[S]).

(2) Let x ∈ S be S-dense. Then α(x) is α[S]-dense. It follows that A ∩ cL(α(x)) = O. Therefore

O = α−1[A] ∩ α−1[cL(α(x))] = α−1[A] ∩ cS((α)∗(α(x))) = α−1[A] ∩ cS(x)

proving the result.

Recall from [20, Theorem 4.1.] that a localic map f : L→M preserves remote sublocales if and only if f [BL]
is a remote sublocale of M.

Proposition 6.5. Assume that f ∗ ◦ ω = α ◦ 1∗. Then 1 is f -remote preserving iff 1[−] preserves remote sublocales.

Proof. (⇒) : Since α[S] is dense in L, Bα[S] = BL making Bα[S] = α[BS] remote from α[S]. Because 1 is
f -remote preserving, we have that f [α[BS]] ∈ Srem(M⋉T) which implies that ω[1[BS]] ∈ Srem(M⋉T) since
ω∗ ◦ f = 1 ◦ α∗. It follows from Lemma 6.4(2) that (ω)−1[ω[1[BS]]] ∈ Srem(T). But 1[BS] ⊆ (ω)−1[ω[1[BS]]],
so 1[BS] ∈ Srem(T). By [20, Theorem 4.1.], 1 preserves remote sublocales.

(⇐) : We show that f [BL] is remore fromω[T]. SinceBL ∈ Srem(L⋉S), it follows from Lemma 6.4(2) that
(α)−1[BL] ∈ Srem(S). By hypothesis, 1[(α)−1[BL]] ∈ Srem(T). By Lemma 6.4(1), ω[1[(α)−1[BL]]] ∈ Srem(M⋉T)
which implies that f [α[(α)−1[BL]]] ∈ Srem(M ⋉ T) since f ◦ α = ω ◦ 1. But BL = Bα[S] ⊆ α[S] and using the
fact that α : S→ α[S] is an isomorphism,

f [α[(α)−1[BL]]] = f [α[(α)−1[Bα[S]]]] = f [Bα[S]] = f [BL] ∈ Srem(M ⋉ T)

as required.
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Consider a commuting diagram

S T

R U

L M

i

α

1

k

ω
φ

θ σ

f

(4)

where S,T,R,U,L and M are locales, the downward arrows are dense injective localic maps and the hor-
izontal arrows are localic maps. We find a relationship between f -remote preservation and φ-remote
preservation. En route to that, we give the following lemma.

Lemma 6.6. From diagram 4, θ[Srem(R ⋉ S)] ⊆ Srem(L ⋉ S).

Proof. We have that α is dense since it is the composite of two dense localic maps i and θ. Let A ∈ Srem(R⋉S)
and choose an α[S]-dense y ∈ α[S]. Then y = α(x) for some x ∈ S. Since α : S→ α[S] is an isomorphism, x is
S-dense so that i(x) is i[S]-dense. Therefore A ∩ cR(i(x)) = O. Observe that θ[A] ∩ cL(α(x)) = O. To see this,
let a ∈ θ[A] ∩ cL(α(x)). Then a = θ(b) for some b ∈ A and α(x) ≤ a. We have that

i(x) = θ∗(θ(i(x))) = θ∗(α(x)) ≤ θ∗(θ(b)) = b

since θ is injective and α = θ ◦ i. Therefore b ∈ A ∩ cR(i(x)) which implies b = 1 so that a = θ(b) = 1. Thus
θ[A] ∩ cL(α(x)) = O. Hence θ[A] ∈ Srem(L ⋉ S).

Since θ[R] ⊆ L, we have that

{B ∈ S(θ[R]) : B ∩ α[S] = O} ⊆ {C ∈ S(L) : C ∩ α[S] = O}

so that

θ[R] ∖ α[S] =
∨
{B ∈ S(θ[R]) : B ∩ α[S] = O} ⊆

∨
{C ∈ S(L) : C ∩ α[S] = O} = L ∖ α[S].

As a result of this and Lemma 6.6, we have the following result.

Lemma 6.7. From diagram 4, θ[∗Srem(R ⋉ S)] ⊆ ∗Srem(L ⋉ S).

Observation 6.8. In light of the preceding two lemmas and the relationship between the β, υ and λ extensions
depicted in diagram 1, we have

Srem(υL ⋉ L) ⊆ Srem(λL ⋉ L) ⊆ Srem(βL ⋉ L)

and

∗
Srem(υL ⋉ L) ⊆ ∗Srem(λL ⋉ L) ⊆ ∗Srem(βL ⋉ L).

Proposition 6.9. If 1 in diagram 4 is f -remote preserving, then it is φ-remote preserving.

Proof. Let A ∈ Srem(R ⋉ S). It follows from Lemma 6.6 that θ[A] ∈ Srem(L ⋉ S). Since 1 is f -remote
preserving, f [θ[A]] ∈ Srem(M ⋉ T) making σ[φ[A]] ∈ Srem(M ⋉ T). By Lemma 6.4(2), (σ)−1[σ[φ[A]]] ∈
Srem(U) ⊆ Srem(U ⋉ T). Since φ[A] ⊆ (σ)−1[σ[φ[A]]] and a sublocale of any member of Srem(U ⋉ T) belongs
to Srem(U ⋉ T), we have that φ[A] ∈ Srem(U ⋉ T). Thus 1 is φ-remote preserving.
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Observation 6.10. Recall from [12] that given a localic map f : L → M and any K ∈ S(L), f [L ∖ K] ⊆ M ∖ f [K]
whenever K = f−1[J] for some J ∈ S(M). Since for the ∗remoteness case of Proposition 6.9 we need φ[R ∖ i[S]] ⊆
U ∖ k[T], we assume that i[S] = φ−1[k[T]] and φ[−] is surjective in diagram 4. Then

φ[R ∖ i[S]] ⊆ U ∖ φ[i[S]] = U ∖ φ[φ−1[k[T]]] = U ∖ k[T]

so that A ∈ ∗Srem(R ⋉ S) implies φ[A] ∈ ∗Srem(U ⋉ T). This approach also helps in verifying ∗remoteness cases of
Corollary 6.12 and Proposition 6.14(2)&(3) below.

Observation 6.11. The converse of Proposition 6.9 holds if α[−] is surjective (hence an isomorphism). Indeed,
assume that 1 is φ-remote preserving and let A ∈ Srem(L ⋉ S). By Lemma 6.4(2), α−1[A] ∈ Srem(S). Therefore
i[α−1[A]] ∈ Srem(R ⋉ S) by Lemma 6.4(1). Since 1 is φ-remote preserving, φ[i[α−1[A]]] ∈ Srem(U ⋉ T). By Lemma
6.6, σ[φ[i[α−1[A]]]] ∈ Srem(M ⋉ T) so that f [θ[i[α−1[A]]]] ∈ Srem(M ⋉ T) because f ◦ θ = σ ◦ φ. Since θ ◦ i = α
and α[−] is surjective, f [θ[i[α−1[A]]]] = f [α[α−1[A]]] = f [A] ∈ Srem(M ⋉ T). Thus 1 is f -remote preserving.

Call a localic map f : L → M γ-remote preserving if γ( f )
[
Srem(γL ⋉ L)

]
⊆ Srem(γM ⋉M) and γ-∗remote

preserving provided that γ( f )
[
∗
Srem(γL ⋉ L)

]
⊆
∗
Srem(γM ⋉M).

Corollary 6.12. We have that

β-remote preserving ⇒ λ-remote preserving ⇒ υ-remote preserving.

Observation 6.13. To get the reverse directions of Corollary 6.12, we observe that the morphisms υL, βL and λL
are isomorphisms whenever L is compact. The case of λL follows since, according to [14], λL is injective (hence an
isomorphism) whenever L is Lindelöf. Because every compact locale is Lindelöf, we have that λL is an isomorphism
whenever L is compact.

We end this section with the following result.

Proposition 6.14. Consider a commuting diagram

L M

N

f

t
φ (5)

where f , 1 and t are localic maps and L,M and N are locales.

1. If φ and f are γ-remote preserving, then t is γ-remote preserving.
2. If t is γ-remote preserving, φ sends elements to dense elements, then f is γ-remote preserving.
3. If t is γ-remote preserving and A ⊆ γ( f )[BγL] for all A ∈ Srem(γM ⋉M), then φ is γ-remote preserving.

Proof. (1) For each A ∈ S(γL), we have

A ∈ Srem(γL ⋉ L) ⇒ γ( f )[A] ∈ Srem(γM ⋉M) since f is γ-remote preserving
⇒ γ(φ)[γ( f )[A]] ∈ Srem(γN ⋉N) since φ is γ-remote preserving
⇒ γ(φ ◦ f )[A] ∈ Srem(γN ⋉N) since γ is a functor
⇒ γ(t)[A] ∈ Srem(γN ⋉N).

(2) Let A ∈ Srem(γL ⋉ L) and choose dense x ∈ M. Since t is γ-remote preserving, we have that γ(t)[A] ∈
Srem(γN ⋉ N). Since φ is skeletal, we have that φ(x) is dense in N. It follows that γ(t)[A] ⊆ o((γN)∗(φ(x))).
But (γN)∗ ◦ φ = γ(φ) ◦ (γM)∗, so γ(t)[A] ⊆ o(γ(φ)((γM)∗(x))). Therefore γ(φ)−1[γ(t)[A]] ⊆ o((γM)∗(x)) making
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γ(φ)−1[γ(t)[A]] remote from M. Since γ(φ)[γ( f )[A]] = γ(t)[A] implies γ( f )[A] ⊆ γ(φ)−1[γ(t)[A]], we have
that γ( f )[A] is remote from M.

(3) Let A ∈ Srem(γM ⋉M). Then A ⊆ γ( f )[BγL] which implies that

γ(φ)[A] ⊆ γ(φ)[γ( f )[BγL]] = γ(t)[BγL].

But γ(t)[BγL] is remote from N, so γ(φ)[A] is remote from N. It follows that φ is γ-remote preserving.

Observation 6.15. We commented in Observation 6.10 that the approach given in that observation can be used to
prove the ∗remoteness case of Proposition 6.14(2)&(3). The ∗remoteness case of Proposition 6.14(1) follows the similar
sketch of the proof of Proposition 6.14(1) where γ-remote preserving is replaced by γ-∗remote preserving.
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