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Abstract. In this paper, we study the domains c0
(
FL,E) and c

(
FL,E) of the matrix, involving Fibonacci and

Lucas numbers, in the spaces c0 and c, respectively. Apart from some basic topological properties, we give
the Schauder basis for them. As well, we determine the α−, β−, γ−duals and characterize certain matrix
classes related to these spaces.

1. Introduction and preliminaries

As is well known, the Fibonacci sequence (Fn) was defined by Leonardo Fibonacci as Fn = Fn−1 + Fn−2
for n ≥ 2 with the initial values F0 = 0 and F1 = 1. This sequence has many interesting and meaningful
properties, and applications such as the golden ratio in arts, sciences and architecture. Similar to the
Fibonacci numbers, the Lucas numbers can be defined Ln = Ln−1 + Ln−2 for n ≥ 2 with L0 = 2 and L1 = 1.

There are many elegant relations concerning Fibonacci numbers. Two of them are as follows [37]:

n∑
k=1

Fk = Fn+2 − 1,
n∑

k=1

F2
k = FnFn+1, for each n ∈N

meanwhile analogous results for the Lucas family are valid as

n∑
k=1

Lk = Ln+2 − 3,
n∑

k=1

L2
k = LnLn+1 − 2, for each n ∈N.

Numerous computational and summation formulas, including both of them were recorded in the literature
[37, Vol 1, p. 251]. For instance, we may give the relation

n∑
k=0

(
n
k

)
FkLn−k = 2nFn, (1)

which is the main motivation of this paper.
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1.1. Sequence spaces

Let the space of all real-valued sequences be denoted by ω and recall that any vector subspace of ω
is a sequence space. One can give the celebrated sequence spaces by ℓp, ℓ∞, c, c0 as the set of p-absolutely
summable, bounded, convergent, and null sequences, respectively.

Let X be a Banach space. Then, it is called as a BK-space if each map pk : X → R defined by pk(z) = zk
is continuous for all k ∈Nwhereas a complete linear metric space is said to be a FK-space with continuous
coordinate functionals.

One can consider an infinite matrix as a linear operator from a sequence space to another one. Let
T = (tnk) be an infinite matrix with real or complex entries and let X and Y be two sequence spaces. Then,
T becomes a matrix transformation X→ Y if for each sequence z = (zk) ∈ X, Tz ∈ Y, i.e., the T−transform of
z, where (Tz)n =

∑
k

tnkzk for n ∈N. By (X,Y) , we denote the class of all matrices T such that T : X→ Y.

In this study,N = {0, 1, 2, ...} and R denotes the set of all real numbers. For simplicity in notation, in the
sequel, the summation without limits runs from 0 to∞.

The matrix domain of an infinite matrix T in X, denoted by XT, is defined by

XT = {z ∈ ω : Tz ∈ X} .

For details concerning the domain of special matrices in normed sequence spaces, the reader can investigate
the monograph of Başar [9].

1.2. Motivation and aim

Creating new sequence spaces using a special limitation method with the help of matrix domain and
researching their topological, algebraic features and matrix transformations have been intensively studied.
Especially, Fibonacci and Lucas sequence have been applied so as to introduce sequence spaces and cope
with their poperties. We may refer the reader to the studies [7, 12, 17, 18, 24, 27–29, 31, 33, 34]. for the
developments in Fibonacci and Lucas sequence spaces’ direction and [2, 3, 13–16, 19, 21, 22, 25, 30, 32, 36,
40, 45, 46] on some new sequence spaces generated by certain triangle matrices. The reader can refer to
the monograph [38] and references therein, devoted to the new developments for summability theory and
related topics, and recent papers [4, 8, 11, 43] concerning the domains of certain triangles in some classical
sequence spaces.

Indeed, the sequence space theory contains a useful tool for acquiring the geometrical and topological
results through the Schauder basis. By adopting this fact, construction of the Euler sequence spaces via
Euler matrix and its some generalizations has been studied and lots of remarkable conclusions have been
revealed in the literature, (see for instance [1, 5, 6, 10, 23, 35, 39, 41]).

Quite recently, the authors of [20] introduced the following regular matrix FL,E =
(

f L,E
nk

)
, defined by

f L,E
nk =


(
n
k

)
2−n FkLn−k

Fn
, if 0 ≤ k ≤ n;

0, if k > n;
(2)

motivated by (1). Also, the domain of this regular matrix in the spaces ℓp and ℓ∞ is studied and certain
topological features containing Schauder basis and the α−dual, β−dual and γ−duals and some matrix
characterizations are achieved.

As a natural continuation of [20], we intend to develop the domains c0

(
FL,E

)
and c

(
FL,E

)
of the matrix

above including Fibonacci and Lucas numbers in the spaces c0 and c, respectively. Some topological
properties are exhibited and the Schauder basis is given for them. Furthermore, the α−, β−, γ−duals of the
spaces and certain matrix classes are established.

It is worth mentioning that the matrix FL,E defined by (2) can be regarded as the composition of the
matrices Euler matrix E1 of order 1 and Fibonacci-Lucas matrix, that can lead to further interesting and
meaningful results in this concept.
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2. The sequence spaces c0

(
FL,E
)

and c
(
FL,E
)

Let us introduce the following sequence spaces c0

(
FL,E

)
and c

(
FL,E

)
as the set of all sequences whose

FL,E
−transforms (see (3) below) are in c0 and c, respectively. Namely,

c0

(
FL,E

)
=

{
z = (zk) ∈ ω : lim

n→∞

n∑
k=0

(
n
k

)
2−n FkLn−k

Fn
zk = 0

}
and

c
(
FL,E

)
=

{
z = (zk) ∈ ω : lim

n→∞

n∑
k=0

(
n
k

)
2−n FkLn−k

Fn
zk exists

}
.

We also give the following sequence y =
(
yn

)
defined by FL,E

−transform of a sequence z = (zk)

yn =
(
FL,Ez

)
n
=

n∑
k=0

(
n
k

)
2−n FkLn−k

Fn
zk, (3)

for all n ∈N.
It should be stated that the spaces c0

(
FL,E

)
and c

(
FL,E

)
are BK-spaces endowed with the norms

∥z∥c0(FL,E) = ∥z∥c(FL,E) =
∥∥∥FL,Ez

∥∥∥
ℓ∞
= sup

n∈N

∣∣∣∣∣∣ n∑
k=0

(
n
k

)
2−n FkLn−k

Fn
zk

∣∣∣∣∣∣ ,
can be reached by Wilansky [44, Theorem 4.3.2].

Theorem 2.1. The spaces c0

(
FL,E

)
and c

(
FL,E

)
are linearly isomorphic to c0 and c, respectively.

Proof. To prove this, we should show the existence of a linear bijection between the spaces c0

(
FL,E

)
and c0.

The linearity is clear. It is satisfied z = 0 whenever FL,Ez = 0 yields the injectiveness of FL,E. Consider a
sequence y =

(
yn

)
∈ c0, if the sequence z = (zk) is denoted by

zk =
k∑

i=0

(
(−1)k−i

(
k
i

)
2i−1 Fi

Fk
Pk−i

)
yi for k ∈N (4)

where Pk is the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L1 L0 0 . . . 0
L2 L1 L0 . . . 0
L3 L2 L1 . . . 0
...

...
...

. . .
...

Lk Lk−1 Lk−2 . . . L1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for all k ∈N \ {0} subject to initial condition P0 = 1, then,(

FL,Ez
)

n
=

1
2nFn

n∑
k=0

(
n
k

)
FkLn−kzk

=
1

2nFn

n∑
k=0

(
n
k

)
FkLn−k

k∑
i=0

(−1)k−i
(
k
i

)
2i−1 Fi

Fk
Pk−iyi

= yn.

Thus, for z = (zk) given by (4) as y =
(
yn

)
∈ c0, one can see that

(
FL,Ez

)
n
= yn for all n ∈ N. By FL,Ez = y,

the mapping FL,E is onto. FL,E is norm-preserving from ∥z∥c0(FL,E) =
∥∥∥y

∥∥∥
ℓ∞
. Consequently, c0

(
FL,E

)
and c0

are linearly isomorphic. To derive the other case of the theorem, replace c0

(
FL,E

)
and c0 by c

(
FL,E

)
and c,

respectively. This finishes the proof.
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Now, for the purpose of the construction of the Schauder basis for the domain of the matrix, we give
the definition a Schauder basis of a normed space. If a normed space (λ, ∥.∥) contains a sequence (δn) such
that for every x ∈ λ, there exists a unique sequence of scalars (τn) for which

lim
n→∞

∥∥∥∥∥∥x −
n∑

k=0
τkδk

∥∥∥∥∥∥ = 0,

then, we say that (δn) is a Schauder basis for λ, and we write

x =
∞∑

k=0
τkδk.

Combining the fact that the domain XT of an infinite matrix T in X has a basis if and only if X has a
basis, and Theorem 2.1 allows us to present the following theorem.

Theorem 2.2. Let ψ(k)
∈ c0

(
FL,E

)
for each k ∈N, and let the sequence ψ(k) =

{
ψ(k)

n

}
n∈N

be defined by

ψ(k)
n =

(−1)n−k

(
n
k

)
2k−1 Fk

Fn
Pn−k, if 0 ≤ k ≤ n;

0, if k > n.
.

Then, (1): The set
{
ψ(0), ψ(1), ...

}
is a basis for the space c0

(
FL,E

)
and any z in c0

(
FL,E

)
is uniquely determined as

z =
∑
k

tkψ(k). (2): For µ = limk→∞

(
FL,Ez

)
k
, the set

{
e, ψ(0), ψ(1), ...

}
is a basis for the space c

(
FL,E

)
and any z in c

(
FL,E

)
is uniquely determined as z = µe +

∑
k

(
tk − µ

)
ψ(k).

3. α−dual, β−dual and γ−duals

We devote this section to determining the α−dual, β−dual and γ−dual of the spaces c0

(
FL,E

)
and c

(
FL,E

)
.

First, we recall the definition of duals of the spaces. By S (X,Y) ,we denote the multiplier space of X and
Y, defined by

S (X,Y) = {u ∈ ω : zu ∈ Y for all z ∈ X} .

In this context, if cs and bs represent the spaces of sequences with convergent and bounded series, respec-
tively, then, the α−dual, β−dual and γ−dual of a sequence space X can be given as

Xα = S (X, ℓ1) , Xβ = S (X, cs) and Xγ = S (X, bs) .

Lemma 3.1. ([42]) T = (tnk) ∈ (c0, ℓ1) = (c, ℓ1) if and only if

sup
N,M∈𭟋

∣∣∣∣∣∣ ∑n∈N

∑
k∈M

tnk

∣∣∣∣∣∣ < ∞,
where 𭟋 denotes the family of all finite subsets ofN.

Lemma 3.2. ([3, Theorem 3.1]) For any triangular matrix U = (unk) with the inverse V = (vnk) , if the matrix
P =

(
pnk

)
is as follows

pnk =


n∑

j=k
b jv jk, if 0 ≤ k ≤ n;

0, if k > n;
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then,

Xβ
U = {b = bk ∈ ω : P ∈ (X, c)}

and

Xγ
U = {b = bk ∈ ω : P ∈ (X, ℓ∞)} .

Our theorems are now in order.

Theorem 3.3. For the spaces c0

(
FL,E

)
and c

(
FL,E

)
, the α−dual is as in the following:

φ1 =

b = (bn) ∈ ω : sup
N,M∈𭟋

∣∣∣∣∣∣ ∑n∈N

∑
k∈M

(−1)n−k
(
n
k

)
2k−1 Fk

Fn
Pn−kbn

∣∣∣∣∣∣ < ∞
 .

Proof. Define the matrix S = (snk) by the relation in terms of any sequence b = (bn) ∈ ω:

snk =

(−1)n−k

(
n
k

)
2k−1 Fk

Fn
Pn−kbn, if 0 ≤ k ≤ n;

0, if k > n.

Apply (3) to get for all n ∈N that

(
Sy

)
n =

n∑
k=0

(−1)n−k
(
n
k

)
2k−1 Fk

Fn
Pn−kbnyk = bnzn,

from which bz ∈ ℓ1 for z ∈ c0

(
FL,E

)
or c

(
FL,E

)
if and only if Sy ∈ ℓ1 for y ∈ c0 or y ∈ c. Hence, use Lemma 3.1

to arrive at

sup
N,M∈𭟋

∣∣∣∣∣∣ ∑n∈N

∑
k∈M

(−1)n−k
(
n
k

)
2k−1 Fk

Fn
Pn−kbn

∣∣∣∣∣∣ ,
and consequently,

(
c0

(
FL,E

))α
=

(
c
(
FL,E

))α
= S. This finishes the proof.

Theorem 3.4. Define the sets φ2, φ3 and φ4 by

φ2 =

{
b = (bk) ∈ ω : sup

n∈N

∣∣∣∣∣∣ n∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−kbi

∣∣∣∣∣∣ < ∞
}
,

φ3 =

{
b = (bk) ∈ ω : lim

n→∞

n∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−kbi exists for each k ∈N

}
and

φ4 =

{
b = (bk) ∈ ω : lim

n→∞

∑
k

n∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−kbi exists

}
.

Then,
(
c0

(
FL,E

))β
= φ2 ∩ φ3,

(
c
(
FL,E

))β
= φ2 ∩ φ3 ∩ φ4,

(
c0

(
FL,E

))γ
=

(
c
(
FL,E

))γ
= φ2.

Proof. The proof follows from Lemma 3.2 by using similar arguments to Theorem 3.3. So, we omit it.
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4. Certain matrix mappings

The aim of this section is to establishing the characterization of certain classes on the space
(
X

(
FL,E

)
,Y

)
for X ∈ {c0, c} and Y = {ℓ1, c0, c, ℓ∞} . We require the following lemmas, given by [42].

Lemma 4.1. T = (tnk) ∈ (c, c) if and only if

sup
n∈N

∑
k
|tnk| < ∞ (5)

holds and there exists λk ∈ R and λ ∈ R such that

lim
n→∞

tnk = λk (6)

for each k ∈N and

lim
n→∞

∑
k

tnk = λ.

Also, T = (tnk) ∈ (c0, c0) if and only if (6) holds and

lim
n→∞

tnk = 0 (7)

for each k ∈N.

Lemma 4.2. T = (tnk) ∈ (c0, ℓ∞) = (c, ℓ∞) if and only if (5) is satisfied. In addition, T = (tnk) ∈ (c0, c) if and only if
the relations (5) and (6) hold.

Lemma 4.3. T = (tnk) ∈ (c, c0) if and only if (5) and (7) are satisfied and limn→∞
∑
k

tnk = 0.

We also need the following Theorem 4.1 of [26].

Theorem 4.4. Let X be a FK-space, V = (vnk) be the inverse matrix of the triangle matrix U = (unk) and Y be an
arbitrary subset of ω. Then, T = (tnk) ∈ (XU ,Y) if and only if

G(n) =
(
1

(n)
mk

)
∈ (X, c) , for each n ∈N,

and

G =
(
1nk

)
∈ (X,Y) ,

where

1
(n)
mk =


m∑

i=k
tnivik, if 0 ≤ k ≤ m;

0, if k > m,

and

1nk =
∞∑
i=k

tnivik, for all k,m,n ∈N.

Now, we list some conditions:

sup
j∈N

j∑
k=0

∣∣∣∣∣∣ j∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni

∣∣∣∣∣∣ < ∞ for each fixed n ∈N. (8)
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lim
j→∞

j∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni exists for each fixed k,n ∈N. (9)

lim
j→∞

j∑
k=0

j∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni exists for each fixed n ∈N. (10)

sup
N,M∈𭟋

∣∣∣∣∣∣ ∑n∈N

∑
k∈M

∞∑
i=k

(−1)n−k
(
n
k

)
2k−1 Fk

Fn
Pn−ktni

∣∣∣∣∣∣ < ∞. (11)

sup
n∈N

∑
k

∣∣∣∣∣∣∞∑i=k
(−1)i−k

(
i
k

)
2k−1 Fk

Fi
Pi−ktni

∣∣∣∣∣∣ < ∞. (12)

lim
n→∞

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni = 0 for each k ∈N. (13)

lim
n→∞

∑
k

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni = 0. (14)

lim
n→∞

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni exists for each k ∈N. (15)

lim
n→∞

∑
k

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktni exists. (16)

sup
n∈N

∑
k

∣∣∣∣∣∣ n∑
r=0

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktri

∣∣∣∣∣∣ < ∞. (17)

lim
n→∞

n∑
r=0

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktri = 0 for each k ∈N. (18)

lim
n→∞

∑
k

n∑
r=0

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktri = 0. (19)

lim
n→∞

n∑
r=0

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktri exists for each k ∈N. (20)

lim
n→∞

∑
k

n∑
r=0

∞∑
i=k

(−1)i−k
(
i
k

)
2k−1 Fk

Fi
Pi−ktri exists. (21)

We are in position to mention our theorem.

Theorem 4.5. Let X ∈
{
c0

(
FL,E

)
, c

(
FL,E

)}
and Y ∈ {ℓ1, c0, c, ℓ∞} . Then, the characterization for T = (tnk) ∈ (X,Y)

can be observed in Table 1.

1. (8), (9) and (11) hold.
2. (8), (9), (10) and (11) hold.
3. (8), (9), (12) and (13) hold.
4. (8), (9), (10), (12) (13) and (14) hold.
5. (8), (9), (12) and (15) hold.
6. (8), (9), (10), (12), (15) and (16) hold.
7. (8), (9) and (12) hold.
8. (8), (9), (10) and (12) hold.

Corollary 4.6. Let X ∈
{
c0

(
FL,E

)
, c

(
FL,E

)}
and Y ∈ {cs0, cs, bs} . Then, the characterization for T = (tnk) ∈ (X,Y)

can be observed in Table 2.
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1. (8), (9), (17) and (18) hold.
2. (8), (9), (10), (17), (18) and (19) hold.
3. (8), (9), (17) and (20) hold.
4. (8), (9), (10), (17) (20) and (21) hold.
5. (8), (9) and (17) hold.
6. (8), (9), (10) and (17) hold.

Table 1: The characterization
To

From l1 c0 c l∞
c0

(
FL,E

)
1 3 5 7

c
(
FL,E

)
2 4 6 8

Table 2: The characterization
To

From l1 c0 c
c0

(
FL,E

)
1 3 5

c
(
FL,E

)
2 4 6

Lemma 4.7. ([42])T = (tnk) ∈ (ℓ1, c0) if and only if (7) holds and

sup
n,k∈N

|tnk| < ∞. (22)

T = (tnk) ∈ (ℓ∞, c0) if and only if (7) holds and

lim
n→∞

∑
k
|tnk| = 0.

T = (tnk) ∈ (ℓ1, c) if and only if (6) and (22) hold. Also, T = (tnk) ∈ (ℓ∞, c) iff (6) holds and

lim
n→∞

∑
k
|tnk| =

∑
k

∣∣∣∣ lim
n→∞

tnk

∣∣∣∣ .
Theorem 4.8. LetA = (ank) and B = (bnk) be infinite matrices, whose entries have relationship as follows:

bnk =
n∑

i=0

(
n
i

)
2−n FiLn−i

Fn
aik,

for all n, k ∈N. Then,A ∈
(
Y,X

(
FL,E

))
if and only if B ∈ (Y,X) for all X = {c0, c} and any sequence space Y.

Proof. For any z = (zk) ∈ Y, we can write

∞∑
k=0

bnkzk =
n∑

i=0

(
n
i

)
2−n FiLn−i

Fn

∞∑
k=0

aikzk,

from which (Bz)n =
(
FL,E (Az)

)
n

for all n ∈ N. So, Az ∈ X
(
FL,E

)
for z = (zk) ∈ Y if and only if Bz ∈ X for

z = (zk) ∈ Y. As a result, the proof is complete.
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The followings are some further conditions:

lim
n→∞

n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik = 0 for each k ∈N. (23)

sup
k,n∈N

∣∣∣∣∣∣ n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik

∣∣∣∣∣∣ < ∞. (24)

lim
n→∞

n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik exists for each k ∈N. (25)

sup
n∈N

∑
k

∣∣∣∣∣∣ n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik

∣∣∣∣∣∣ < ∞. (26)

lim
n→∞

∑
k

n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik = 0. (27)

lim
n→∞

∑
k

n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik exists. (28)

lim
n→∞

∑
k

∣∣∣∣∣∣ n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik

∣∣∣∣∣∣ = 0. (29)

lim
n→∞

∑
k

∣∣∣∣∣∣ n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik

∣∣∣∣∣∣ = ∑
k

∣∣∣∣∣∣ limn→∞

n∑
i=0

(
n
i

)
2−n FiLn−i

Fn
tik

∣∣∣∣∣∣ . (30)

Theorem 4.9. Let X ∈
{
c0

(
FL,E

)
, c

(
FL,E

)}
and Y ∈ {ℓ1, c0, c, ℓ∞} . Then, the characterization for T = (tnk) ∈ (Y,X)

can be observed in Table 3.

1. (23) and (24) hold.
2. (24) and (25) hold.
3. (23) and (26) hold.
4. (25) and (26) hold.
5. (23), (26) and (27) hold.
6. (25), (26) and (28) hold.
7. (23) and (29) hold.
8. (25) and (30) hold.

Table 3: The characterization
To

From c0

(
FL,E

)
c
(
FL,E

)
l1 1 2
c0 3 4
c 5 6

l∞ 7 8
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[14] M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), 114–129.
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