
Filomat 39:9 (2025), 3029–3034
https://doi.org/10.2298/FIL2509029S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this work we will give the very initial concepts of potential theory (m − cv polar sets, m − cv
measures and their properties) in the class of m-convex (m − cv) functions in the domain D ⊂ Rn

x . In
particular, we will prove that for a m − cv measure ω∗(x,E,D) its Hessian Hn−m+1

ω∗ = 0 in the domain D\E.

1. Introduction

In this work we will give the very initial concepts of potential theory (m− cv polar sets, m− cv measures
and their properties) in the class of m-convex (m − cv) functions in the domain D ⊂ Rn

x . In particular, we
will prove that for a m − cv measure ω∗(x,E,D) its Hessian Hn−m+1

ω∗ = 0 in the domain D\E.
If the potential theory in the class of strongly m-subharmonic functions is based on differential forms

and currents (ddcu)k
∧ βn−k

≥ 0, k = 1, 2, ...,n − m + 1, where β = ddc
∥z∥2 the standard volume form in Cn,

then the potential theory in the class of m− cv functions is based on Borel measures of a completely different
nature, namely, on Hessians Hk(u) ≥ 0, k = 1, 2, ...,n − m + 1. In the work of A. Sadullaev [9] (see also the
work of R. Sharipov and M. Ismoilov [8]) it was proved that in the class of bounded m-convex functions
the Hessians Hk(u) ≥ 0, k = 1, 2, ...,n −m + 1, are defined and are positive Borel measures. Note that when
m = n the class m − cv coincides with the class of subharmonic functions, and when m = 1 it coincides with
the class of convex functions. The classes of subharmonic and convex functions are well studied (see [6],
[10], [1]-[2], [3], [4]–[5]).

2. m − cv polar sets.

Definition 2.1. By analogy with polar sets in classical potential theory, a set E ⊂ D ⊂ Rn is called m − cv polar in
D, if there exists a function u(x) ∈ m − cv(D), u(x) . −∞, such that u |E = −∞.

From the embedding m − cv(D) ⊂ sh(D) it follows that every m − cv polar set is polar in the sense of
classical potential theory. In particular, for a m− cv polar set E it is true H2n−2+ε(E) = 0,∀ε > 0 and, therefore,
the Lebesgue measure of a m − cv polar set E is equal to zero.
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m − cv polar sets have another unexpected phenomenon, that when m < n
2 + 1 they are empty, i.e. if the

set E ⊂ D is m − cv polar, m < n
2 + 1, then E = ∅. This follows from the fact that for m < n

2 + 1 any m − cv
function is continuous. (see [11]-[13], [14], [8]). However, for m ≥ n

2 + 1 there are non-empty m − cv polar
sets. Therefore, the properties of m− cv polar sets proved below are meaningful only for the cases m ≥ n

2 +1.

Example 2.2. (fundamental m − cv function).

χm(x, 0) =


|x|2−

n
n−m+1 at m < n

2 + 1
ln |x| at m = n

2 + 1
− |x|2−

n
n−m+1 at m > n

2 + 1
(1)

Thus, at the m < n
2 + 1 fundamental function is bounded and Lipschitz, and at m ≥ n

2 + 1 it is equal −∞ at the
point x = 0 Note that at m = n, i.e. for the subharmonic case it coincides with the fundamental solution − 1

|x|n−2 of the
Laplace operator ∆.

Theorem 2.3. The countable union of m− cv polar sets is m− cv polar, i.e. if E j ⊂ D is m− cv polar, then E =
∞⋃
j=1

E j

is also m − cv polar.

T h e p r o o f is identical to a similar proof for a polar sets and we omit it.
Potential theory is usually constructed in regular domains with respect to one or another class of

functions.

Definition 2.4. A domain D ⊂ Rn is called m − cv regular if there exists ρ(x) ∈ m − cv(D) such that ρ(x) <
0, lim

x→∂D
ρ(x) = 0. It is called m − cv strictly regular if there is a twice smooth strictly m − cv function in some

neighborhood D+ ⊃ D̄ of the closure D̄ such that D =
{
ρ(x) < 0

}
. Strictly m− cv of a function ρ(x) in D+ means that

for some δ > 0 the difference ρ(x) − δ∥x∥2 is a m − cv function in D+.

Theorem 2.5. Let a domain D ⊂ Rn be m − cv regular and the subset E ⊂ D such that the intersection E ∩ G is
m − cv polar in G for an arbitrary compact subdomain G ⊂⊂ D. Then E is m − cv polar in D. Moreover, there is a
function u(x) ∈ m − cv(D), u |D < 0 : u(x) . −∞, u(x) = −∞ ∀ x ∈ E.

P r o o f. The theorem is very useful in proving the more general result that a locally m − cv polar set is
a globally (overall Rn) m − cv polar set. Since D ⊂ Rn is m − cv regular, then there exists ρ(x) ∈ m − cv(D)
such that ρ(x) < 0, lim

x→∂D
ρ(x) = 0. We put Dδ =

{
x ∈ ∂D : ρ(x) < −δ

}
⊂⊂ D, δ > 0. Using the connected

components of the open sets Dδ, we construct the exhaustion G j ⊂⊂ G j+1,
∞⋃
j=1

G j = D, G1 , ∅, where G j is

suitable connected component of the open set Dδ j =
{
x ∈ ∂D : ρ(x) < −δ j

}
⊂⊂ D, δ j > 0, δ j ↓ 0.

According to the conditions of the theorem, there is a function v j(x) ∈ m − cv(G j+2) such that v j . −∞,
but v j

∣∣∣E∩G j+2 ≡ −∞. Since the set {v j = −∞} has Lebesgue measure zero, there is a point a ∈ G1 such that
v j(a) , −∞ for all j ∈ N.

Let’s put M j = max
x∈Ḡ j+1

v j(x), V j(x) = 1
2 j ·

v j(x)−M j

M j−v j(a) and u j(x) = A j(ρ(x) + δ j+1), where A j > 0 is that u j

∣∣∣G j ≤ −1.

Then V j(x)
∣∣∣G j+1 < 0, u j

∣∣∣∂G j+1 ≡ 0 and, therefore, the function

w j(x) =
{

max
{
V j(x),u j(x)

}
, at x ∈ G j+1

u j(x), at x < G j+1

is m − cv in D ( j = 1, 2, ...), w j(x) < 0 in G j+1.

The sum w(x) =
∞∑
j=1

w j(x) ∈ m − cv(D) , w(a) = −1,w |E ≡ −∞. It follows that E is m − cv polar in D. Note

that if we select in advance a sequence δ j converging to zero quickly, for example as δ j =
1

( j!)2 , then we will
get w(x) bounded in D, w(x) ≤ C. The theorem is proven.
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3. m − cv measure

In the theory of m-convex functions, the m − cv measure plays the same role as the harmonic measure
in the classical potential theory. To exclude trivial cases, regular or even strictly m − cv regular domains
D ⊂ Rn are usually considered as a fixed domain.

Let E ⊂ D be some subset of a strictly m − cv regular domain D ⊂ Rn.

Definition 3.1. Consider the class of functions

U(E,D) = {u(x) ∈ m − cv(D) : u|D ≤ 0, u|E ≤ −1} (2)

and put ω(x,E,D) = sup {u(x) : u ∈ U(E,D)}. Then the regularization ω∗(x,E,D) is called the m − cv measure of
the set E with respect to the domain D.

From the property of the upper envelope of m − cv functions (see [7]) it follows that ω∗(x,E,D) ∈
m − cv(D). By Choquet’s lemma (see [6], [10]) there exists a countable subfamily U′ ⊂ U(E,D) such that{
sup {u(x)} : u ∈ U′(E,D)

}∗
≡ ω∗(x,E,D). It follows that the m − cv measure ω∗(x,E,D) can be represented

as the limit of a monotonically increasing sequence
{
u j(x)

}
⊂ U(E,D) :

[
lim
j→∞

u j(x)
]∗
≡ ω∗(x,E,D).

In the special case, when E ⊂ D is compact, the functions u j(x) ⊂ U(E,D) can be selected to be continuous
in D, which can be easily verified by convexly continuing u j(x) ⊂ U(E,D) into a certain fixed neighborhood
D+ ⊃ D̄ and approximating u j with smooth functions uk = u ◦ Kk(x − y).

Properties of the m − cv measure:
1) (monotonicity) if E1 ⊂ E2, then ω∗(x,E1,D) ≥ ω∗(x,E2,D); if E ⊂ D1 ⊂ D2, then ω∗(x,E,D1) ≥

ω∗(x,E,D2);
2) ω∗(x,U,D) ∈ U(U,D) for open set U ⊂ D and, therefore ω∗(x,U,D) ≡ ω(x,U,D);
I t f o l l o w s from the fact that for concentric balls B(x0, r) ⊂ B(x0,R) ⊂⊂ U, 0 < r < R, the m − cv

measure

ω∗(x, B̄(x0, r),B(x0,R)) = max
{
−1,

χm(x, x0) − χm(R, 0)
χm(R, 0) − χm(r, 0)

}
,

and therefore in both cases m < n
2 +1 or m ≥ n

2 +1 we haveω∗(x0,U,D) = −1. Here χm(x, x0) is a fundamental
m − cv function (see (1)).

3) if U ⊂ D is an open set, U =
∞⋃
j=1

K j, where K j ⊂
◦

K
j+1

, then ω∗(x,K j,D) ↓ ω(x,U,D) (easily follows from

property 2).
4) if E ⊂ D an arbitrary set, then there is a decreasing sequence of open sets U j ⊃ E, U j ⊃ U j+1 ( j = 1, 2, ...),

such that ω∗(x,E,D) =
[
lim
j→∞
ω(x,U j,D)

]∗
.

I n f a c t, if the sequence
{
u j(x)

}
⊂ U(E,D) is monotonically increasing:

[
lim
j→∞

u j(x)
]∗
≡ ω∗(x,E,D), then

the open set U j =
{
u j < −1 + 1

j

}
has the property, that U j ⊃ E, U j ⊃ U j+1 ( j = 1, 2, ...). Hence, u j(x) − 1

j <

−1 ∀x ∈ U j and u j(x) − 1
j ≤ ω

∗(x,U j,D) ≤ ω∗(x,E,D) ∀x ∈ D. Therefore, from
[
lim
j→∞

u j(x)
]∗
≡ ω∗(x,E,D) we

get ω∗(x,E,D) =
[
lim
j→∞
ω(x,U j,D)

]∗
5) the m−cv measureω∗(x,E,D) is either nowhere equal to zero or identically equal to zero. ω∗(x,E,D) ≡ 0

if and only if E is m − cv polar in D.

Remark 3.2. Property 5 is meaningful only for m ≥ n
2 + 1 when m < n

2 + 1 a non-empty m − cv polar set does not
exist, so the trivial m − cv measure does not exist either.
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Example 3.3. Consider m = 1, take a ball B = B(0, 1) and a set E = {0} in it, consisting only one point. Consider the
1− cv measure v = ω∗(x,E,D), x ∈ Rn, v ∈ R, as a function inRn+1

(x,v). Then it is easy to see that the convex function
v = ω∗(x,E,D), x ∈ Rn, v ∈ R, will be a cone, with a vertex at a point (0,−1) and with the base {x ∈ ∂B, v = 0}.
Thus, the 1 − cv measure ω∗(x,E,D) , 0.

P r o o f o f P r o p e r t y 5. The first part of the property follows from the maximum principle for m − cv
functions: if ω∗(x0,E,D) = 0 at some point x0

∈ D, then ω∗(x,E,D) ≡ 0 in D.
Letω∗(x,E,D) ≡ 0 be now. Then there exists a point x0

∈ D such thatω∗(x0,E,D) = 0. By definitionω, for

each j ∈ N there is a function u j(x) ⊂ U(E,D) such that u j(x0) ≥ − 1
2 j . Let’s consider the sum u(x) =

∞∑
j=1

u j(x).

It is m-convex because u j < 0 in D j; u(x) . −∞, because u(x0) ≥ −1, u|E ≡ −∞ because u j

∣∣∣
E ≤ −1. This shows

that E is a m − cv polar set in D.
And vice versa, for a m − cv polar set E ⊂ D, according to Theorem 2.3, there is a function v(x) ∈

m− cv(D) : v|D < 0, v(x)/≡ −∞ but v|E ≡ −∞. Then the function v(x)
j ∈ U(E,D) for any j ∈ N. Consequently

ω(x,E,D) ≥ v(x)
j , we also get from here that: ω(x,E,D) = 0 ∀x ∈ D : v(x) , −∞. Since the Lebesgue

measure of the set {v = −∞} is equal to zero, then ω∗(x,E,D) ≡ 0 in D.
6) (theorem on two constants). If the function u(x) is m-convex in D ⊂ Rn and u|D ≤M, u|E ≤ m, (E ⊂ D),

then for all x ∈ D the following inequality holds

u(x) ≤M(1 + ω∗(x,E,D)) −mω∗(x,E,D). (3)

F o l l o w i n g out of u(x)−M
M−m ∈ U(E,D).

Definition 3.4. A point x0
∈ K is called a m−cv regular point of a compact K (with respect to D) ifω∗(x0,K,D) = −1.

A compact K ⊂ D is called a m − cv regular compact if each of its point x0
∈ K is m − cv regular.

Since m− cv(D) ⊂ sh(D), then the m− cv measure of a pair (K,D) is always no greater than the harmonic
measure of this pair. Consequently, regular compacta in the sense of classical potential theory are always
m − cv regular. Therefore, the closure of a domain G ⊂⊂ D with a doubly smooth boundary ∂G is a m − cv
regular compact. It follows that for any compact set K ⊂ U ⊂ D, where U is an open set, there is always
a pluriregular compact set F : K ⊂ F ⊂⊂ U ⊂ D. This follows from the fact that for K ⊂ U it is easy to
construct an open set G ⊂⊂ U, G ⊃ K, with a twice piecewise smooth boundary ∂G. Therefore, the compact
F = Ḡ is the desired m − cv regular compact. All this shows that the family of m − cv regular compacta is
quite rich.

7) if the set E lies compactly in a strictly m−cv regular domain, D =
{
ρ(x) < 0

}
, E ⊂⊂ D then the measure

m − cv extends to a neighborhood ρ(x) < δ, δ > 0, of the closure D̄.
I n f a c t, since E is a compact set, then there is a constant C > 0 such that Cρ(x) < −1 ∀x ∈ E. It follows

that Cρ(x) ∈ U(E,D) and Cρ(x) ≤ ω∗(x,E,D). Therefore, the function

w(x) =
{

max
{
Cρ(x), ω∗(x,E,D)

}
at x ∈ D

Cρ(x) at x < D

is m − cv in some neighborhood D+ ⊃ D̄, w(x) = ω∗(x,E,D) ∀x ∈ D.
The following theorem plays an important role in introducing the condenser capacity and in further

studying the potential properties of m − cv convex functions.

Theorem 3.5. If a compact set E ⊂ D is m − cv regular, then the m − cv measure ω∗(x,E,D) ≡ ω(x,E,D) and is a
continuous function in D, ω∗(x,E,D) ∈ C(D).

P r o o f. According to property 7), we extend the m − cv measure ω∗(x,E,D) into a neighborhood
ρ(x) < δ, δ > 0, of the closure D̄ and approximate it in a certain neighborhood

D+ ⊃ D̄ : u j (x) ↓ ω∗ (x,E,D) , x ∈ D+, u j (x) ∈ C∞ (D+) ∩m − cv (D+) .
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We fix a number ε > 0. Applying Hartogs’ Lemma twice to the sequence u j(x) ↓ ω∗(x,E,D) and to
neighborhoods U = {ω∗(x,E,D) < −1 + ε} ⊃ E, D̆ = {ω∗(x,E,D) < ε} ⊃ D̄,we find a number j0 ∈N : u j(x) <
−1+ 2ε, ∀x ∈ E, u j(x) < 2ε, ∀x ∈ D̄, j ≥ j0. Then u j(x)− 2ε < −1, ∀x ∈ E, u j(x)− 2ε < 0, ∀x ∈ D, j ≥ j0, i.e.
u j(x)− 2ε < −1, ∀x ∈ E, u j(x)− 2ε < 0, ∀x ∈ D, j ≥ j0 and u j(x)− 2ε ∈ U(E,D), ω∗(x,E,D)− 2ε ≤ u j(x)− 2ε ≤
ω∗(x,E,D). This means that the sequence of smooth functions u j (x) ↓ ω∗ (x,E,D) converges uniformly and
ω∗(x,E,D) ∈ C(D). The theorem is proven.

4. Properties of Hessians of measures

m − cv measure ω∗(x,E,D) has the maximality property outside a compact set E (in the domain D\E).
This means that for any domain G ⊂⊂ D\E the inequality ω∗(x,E,D) ≥ v(x) ∀x ∈ G holds for all functions
v ∈ m − cv(D) : ω∗(x,E,D)|∂G ≥ v(x)|∂G. To prove the maximality property, we first recall the definition
of Hessians Hk, k = 1, 2, ...,n − m + 1, for a bounded semi-continuous function u(x) ∈ m − cv(D) ∩ L∞(D).
They are positive Borel measures (see [9]). Let us embed Rn

x in Cn
z , R

n
x ⊂ C

n
z = R

n
x + iRn

y (z = x + iy), as a
real n−dimensional subspace of the complex space Cn

z . Then an upper semi-continuous function u(x) in a
domain D ⊂ Rn

x will be m-convex if and only if the function uc(z) = uc(x + iy) = u(x) that does not depend
on variables y ∈ Rn

y, is strongly m−subharmonic ( uc
∈ shm ) in the domain D ×Rn

y (see [7], [9]).
If m-convex in a domain D ⊂ Rn

x function u(x) ∈ m − cv(D) is bounded, then uc(z) will also be a
bounded, strongly m-subharmonic function in the domain D ×Rn

y ⊂ C
n
z . As it is well known, the operators

(ddcuc)k
∧βn−k, k = 1, 2, ...,n−m+1 are defined for a bounded shm functions as Borel measures in the domain

D ×Rn
y ⊂ C

n
z , µk = (ddcuc)k

∧ βn−k.
Since for a doubly smooth function,

(ddcuc)k
∧ βn−k = k!(n − k)!Hk(uc)βn,

then for a bounded, strongly subharmonic function in the domain D × Rn
y ⊂ C

n
z , it is natural to determine

its Hessians, equating them to the measure

Hk(uc) =
µk

k!(n − k)!
=

1
k!(n − k)!

(ddcuc)k
∧ βn−k, (4)

µk = (ddcuc)k
∧ βn−k, k = 1, 2, ...,n −m + 1.

Since uc
∈ shm

(
D ×Rn

y

)
does not depend on y ∈ Rn

y, then for any Borel sets Ex ⊂ D, Ey ⊂ Rn
y the

measures 1
mesEy
µk(Ex × Ey) = νk(Ex) do not depend on the set Ey ⊂ Rn

y, i.e. 1
mesEy
µk(Ex × Ey) = νk(Ex). We will

call Borel measures νk : νk(Ex) = 1
mesEy
µk(Ex×Ey), k = 1, 2, ...,n−m+1, as Hessians Hk, k = 1, 2, ...,n−m+1

for a bounded, m-convex function u(x) ∈ m − cv(D) in the domain D × Rn
x . For a doubly smooth function

u(x) ∈ m − cv(D) ∩ C2(D), the Hessians are ordinary functions; however, for a non-doubly smooth, but
bounded semicontinuous function u(x) ∈ m − cv(D) ∩ L∞(D), the Hessians Hk, k = 1, 2, ...,n − m + 1, are
positive Borel measures.

Theorem 4.1. For any m − cv regular compact set E ⊂ D, the m − cv measure ω∗(x,E,D) is a maximal function in
D\E.Moreover, Hn−m+1

ω∗ = 0 in the domain D\E.

P r o o f. a) The m − cv measure ω∗(x,E,D) ≡ ω(x,E,D) is maximal in D\E. In fact, if ω(x,E,D) is not
maximal function in D\E, then there is a domain G ⊂⊂ D and a function ϕ(x) ∈ m − cv(D) : ϕ

∣∣∣
∂G ≤ ω|∂G,

but ϕ(x0) > ω(x0) at some point x0
∈ G. Then the function

w(x) =
{

max
{
ω(x), ϕ(x)

}
at x ∈ Ḡ

ω (x) at x ∈ D\G

is m-convex, w(x) ∈ m − cv(D), w(x)|D < 0, w(x)|E ≤ −1 because w(x) = ω(x) ∀x ∈ D\E. Hence, w(x) ≤ ω(x)
and ϕ(x0) ≤ ω(x0). Contradiction.
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b) Hn−m+1
ω∗ = 0 in the D\E. R e a l l y, it is not difficult to see that the function u(x) ∈ m − cv(G) ∩ C(D) is

maximal if and only if the function uc(z) ∈ shm

(
G ×Rn

y

)
∩ C
(
G ×Rn

y

)
is maximal shm function. This implies

(ddcuc)n−m+1
∧ βm−1, which is the same Hn−m+1(uc) = 0. This is equivalent to the fact that Hn−m+1(u(x)) = 0.

The theorem is proven.
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