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Abstract. LetGbe a k-uniform hypergraph andAα(G) = αD(G)+(1−α)A(G) the convex linear combination
of its degree diagonal tensorD(G) and its adjacency tensorA(G), where k ≥ 3 and 0 ≤ α < 1. The α-spectral
radius of G is the largest modulus of all the eigenvalues ofAα(G). Let B(n, k) be the set of the connected
k-uniform bicyclic hypergraphs, where k ≥ 3. The number of the edges of the hypergraphs in B(n, k) is
denoted by m = n+1

k−1 . We develop a new ρα-normal labeling method for calculating the α-spectral radius
of k-uniform hypergraphs. By using some transformations and the new ρα-normal labeling methods, we
characterize the hypergraphs with the first and the second largest α-spectral radii among B(n, k), where
k ≥ 4 and m = n+1

k−1 ≥ 20.

1. Introduction

Let G = (V(G),E(G)) be a hypergraph, where V(G) = {v1, . . . , vn} and E(G) = {e1, . . . , em} are respectively
the sets of the vertices and the edges ofG. For each edge e ∈ E(G), if |e| = k, thenG is a k-uniform hypergraph,
where k ≥ 2. In G, a path of length p from v1 to vp+1 is an alternating sequence v1e1v2 . . . vpepvp+1 of vertices
and edges such that vi, vi+1 ⊆ ei for i = 1, . . . , p. A hypergraph is connected if there is a path connecting
any two vertices of G. For a k-uniform hypergraph G, let ω(G) and r(G) be its numbers of components
and cyclomatics, respectively. A k-uniform hypergraph G is called r(G)-cyclic if m(k − 1) − n + ω(G) = r(G)
holds [4]. If ω(G) = 1, then G is a connected hypergraph. If r(G) = 0, 1, 2, then G is respectively a supertree,
a k-uniform unicyclic hypergraph and a k-uniform bicyclic hypergraph. Thus, for a k-uniform bicyclic
hypergraph G, we have m = n+1

k−1 . For a vertex v ∈ V(G), the degree of v, denoted by dv, is the number of the
edges of G which are incident with v. A vertex of degree one is called a core vertex. A vertex of degree at
least two is referred to as an intersection vertex (abbreviated as IV). A pendent edge means that it has only
one IV. A non-pendent edge has at least two IVs.

A real tensor A = (ai1i2···ik ) ∈ R
n×n×···×n of order k and dimension n over the real field R is a multi-

dimensional array with nk entries, where ai1i2···ik ∈ R with i1, i2, · · · , ik ∈ [n] = {1, 2, · · · ,n}. In 2005, Qi [18]
and Lim [11] independently introduced the concept of tensor eigenvalues and the spectra of tensors as
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follows. Let x = (x1, x2, . . . , xn)T
∈ Cn be an n-dimensional complex column vector, where C is the set of

complex numbers. Let x[k] = (xk
1, x

k
2, · · · , x

k
n)T, where k is a positive integer. By using the product of tensors

defined by Shao [21],Axk−1 is simplified asAx. ThenAx is a vector in Cn whose i-th component is given
by

(Axk−1)i = (Ax)i =

n∑
i2,...,ik=1

aii2···ik xi2 · · · xik , for each i ∈ [n]. (1)

We have

xT(Ax) =
n∑

i1,i2,...,ik=1

ai1i2...ik xi1 · · · xik . (2)

If there exist a number λ ∈ C and a nonzero eigenvector x ∈ Cn such that Axk−1 = λx[k−1], namely
(Axk−1)i = λxk−1

i for any i ∈ [n], then x is an eigenvector ofA corresponding to the eigenvalue λ.
Let G be a k-uniform hypergraph with n vertices. In 2012, Cooper and Dutle [2] defined that the

adjacency tensor of G is the k-ordered and n-dimensional tensor A(G) =
(
ai1i2···ik

)
, where ai1i2···ik =

1
(k−1)! if

{vi1 , vi2 , . . . , vik } ∈ E(G) and ai1i2···ik = 0 otherwise. LetD(G) = (di1i2...ik ) be the degree diagonal tensor of order
k and dimension n for G, where di1i2...ik = dvi if i1 = i2 = . . . = ik = i with vi ∈ V(G) and i = 1, · · · ,n, and
di1i2...ik = 0 otherwise with i1, i2, . . . , ik ∈ [n]. In 2017, Nikiforov [15] proposed to merge the spectral properties
of the adjacency matrix and the signless Laplacian matrix of a graph. Let Aα(G) = αD(G) + (1 − α)A(G)
be the convex linear combination of D(G) and A(G), where 0 ≤ α < 1. The α-spectral radius of G,
denoted by ρα(G), is defined to be the largest modulus of all the eigenvalues of Aα(G), i.e., ρα(G) =
max{|λ|

∣∣∣ λ is an eigenvalue ofAα(G)}. Inspired by the work of Nikiforov [15], Lin et al. [12] and Guo and
Zhou [6] proposed to study Aα(G) and ρα(G). Obviously, ρ0(G) and ρ 1

2
(G) are respectively the spectral

radius of G and the signless Laplacian spectral radius of G.
Let x be a vector of dimension n and U a subset in [n]. We write xU =

∏
i∈U xi for short. For a k-uniform

hypergraph G, by the definition ofAα(G), (1) and (2), we get

(Aα(G)x)v = αdvxk−1
v + (1 − α)

∑
e:v∈e

xe\{v}, for each v ∈ V(G), (3)

xT(Aα(G)x) = α
∑

v∈V(G)

dvxk
v + (1 − α)

∑
e∈E(G)

kxe. (4)

Since the studies on the α-spectral radius of hypergraphs are of practical significance, they have attracted
many attentions from researchers. The hypergraphs with the extremal α-spectral radii have been obtained.
Among the k-uniform supertrees, You et al. [27] obtained the supertrees with the first to the third largest
α-spectral radii, and they proposed a conjecture on the supertrees with the fourth to the eighth largest α-
spectral radii. Wang et al. [24] solved this conjecture and the supertrees with the fourth to the eighth largest
α-spectral radii among the k-uniform supertrees were obtained. Among the k-uniform non-caterpillar
hypergraphs with a given diameter, Wang et al. [22] deduced the supertrees with the first and the second
largestα-spectral radii. Among hypergraphs with a given number of pendent edges and among the unicyclic
hypergraphs, Lin and Zhou [13] obtained the hypergraphs with the largest α-spectral radii. Among the k-
uniform unicyclic hypergraphs with a fixed diameter and among the k-uniform unicyclic hypergraphs with
a given number of pendent edges, Kang et al. [8] characterized the hypergraphs with the largest α-spectral
radii. For the upper bounds of the α-spectral radius for hypergraphs, one can refer to Refs. [3, 6, 7, 12, 13].

In studying the spectral radius of the k-uniform hypergraphs, one of the powerful methods is the
α-normal labeling method, which was first developed by Lu and Man [14]. For example, Ouyang et
al. [16] used it to determine the first five hypergraphs with larger spectral radii among the k-uniform
unicyclic hypergraphs and the first three hypergraphs with larger spectral radii among the k-uniform
bicyclic hypergraphs. Researchers also extended the α-normal labeling method to study the upper bound
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of the α-spectral radius of hypergraphs [23] and the p-spectral radius of hypergraphs [10]. For more details
about the α-normal labeling method, one can refer to Refs. [1, 16, 20].

Let B(n, k) be the set of the connected k-uniform bicyclic hypergraphs, where k ≥ 3. Motivated by the
above-mentioned results, in this article, we will study the hypergraphs with the larger α-spectral radii
among B(n, k), where k ≥ 3.

This article is organized as follows. In Section 2, we introduce some necessary lemmas which are useful
for subsequent proofs. In Section 3, we propose a useful and new ρα-normal labeling method for studying
the α-spectral radius of k-uniform hypergraphs. In Section 4, by using the ρα-normal labeling method
proposed in Section 3, we compare the α-spectral radii of some hypergraphs amongB(n, k). With the aid of
some transformations and the results obtained in Section 4, we obtain the k-uniform hypergraphs with the
first and the second largest α-spectral radii among B(n, k) in Section 5, where k ≥ 4 and m = n+1

k−1 ≥ 20.

2. Preliminaries

In this section, some definitions and necessary lemmas are introduced.

Definition 2.1. [26] LetA = (ai1i2···ik ) be a nonnegative tensor of order k and dimension n. For any nonempty proper
index subset I ⊂ [n], if there is at least an entry ai1i2···ik > 0, where i1 ∈ I and at least an i j ∈ [n] \ I for j = 2, 3, . . . , k,
thenA is called a nonnegative weakly irreducible tensor.

Let Rn
+ = {x = (x1, x2, · · · , xn)T

∈ Rn
| xi ⩾ 0,∀i ∈ [n]} and Rn

++ = {x = (x1, x2, · · · , xn)T
∈ Rn

| xi > 0,∀i ∈
[n]}.

Lemma 2.2. [5, 25] (The Perron–Frobenius theorem for nonnegative tensors) LetA be a nonnegative tensor of order
k and dimension n, where k ≥ 2. Then we have the following statements.

(i). ρ(A) is an eigenvalue ofA with a nonnegative eigenvector x ∈ Rn
+ corresponding to it.

(ii). IfA is weakly irreducible, then ρ(A) is the unique eigenvalue ofA with the positive eigenvector x ∈ Rn
++,

up to a positive scaling coefficient.

Lemma 2.3. [17] A k-uniform hypergraph G is connected if and only ifAα(G) is weakly irreducible.

From Lemmas 2.2 and 2.3, if G is a connected k-uniform hypergraph, then there exists the unique vector
x ∈ Rn

++ corresponding to ρα(G). This vector x is referred to as the α-Perron vector of G, where ∥x∥kk = 1.

Lemma 2.4. [19] LetA be a nonnegative symmetric tensor of order k and dimension n. We have

ρ(A) = max
{
xT(Ax) | x ∈ Rn

+, ∥x∥
k
k = 1

}
.

Furthermore, x ∈ Rn
+ with ∥x∥kk = 1 is an optimal solution of the above optimization problem if and only if it is an

eigenvector ofA corresponding to the eigenvalue ρ(A).

From Lemma 2.4, ρ(Aα) can be expressed as follows:

ρ(Aα) = max

xT(Aαx)
∥x∥kk

, x ∈ Rn
+, x , 0

 . (5)

The edge-removing operation, which is a useful method for studying the α-spectral radius, is shown in
Definition 2.5.

Definition 2.5. [9] Let G = (V(G),E(G)) be a hypergraph with v ∈ V(G) and e1, . . . , er ∈ E(G) such that v < ei
for i ∈ [r] = {1, 2, · · · , r}, where r ≥ 1. Suppose that ui ∈ ei, where i ∈ [r] and the vertices u1,u2, · · · ur are
not necessarily distinct. Let e′i = (ei\{ui}) ∪ {v}, where i ∈ [r]. Let G′ = (V(G′),E(G′)) be the hypergraph with
E(G′) = (E(G)\{e1, . . . , er}) ∪ {e′1, . . . , e

′
r}. Then we say that G′ is obtained from G by removing the edges (e1, . . . , er)

from (u1, . . . ,ur) to v.
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Lemma 2.6. [6] Let G be a connected k-uniform hypergraph, and G′ the hypergraph obtained from G by removing
edges (e1, . . . , er) from (u1, . . . ,ur) to v, where r ≥ 1. Let x be the α-Perron vector of G. If xv ≥ max{xu1 , . . . , xur }, then
ρα(G′) > ρα(G).

Lemma 2.7. [16] Let G be a simple connected r-cyclic k-uniform hypergraph with n vertices. Let G′ be a connected
subhypergraph of G. If G′ is r′-cyclic, then we have r′ ≤ r.

3. A new ρα-normal labeling method for the α-spectral radius of k-uniform hypergraphs

In this section, we will propose a useful ρα-normal labeling method for the α-spectral radius of the
k-uniform hypergraphs, which generalizes the α-normal labeling method developed by Lu and Man [14]
for the spectral radius of the k-uniform hypergraphs. The definitions of ρα-normal, ρα-subnormal and
ρα-supernormal for the α-spectral radius of the k-uniform hypergraphs are introduced, which are shown
in Definitions 3.1–3.6, respectively. Then, we give the relationship between the ρα-normal labeling and the
α-spectral radius of k-uniform hypergraphs, which are shown in Lemmas 3.3–3.7.

Definition 3.1. Let k ≥ 2 and 0 ≤ α < 1. A connected k-uniform hypergraph G is called ρα-normal if there exists a
weighted incidence matrix B satisfying

(i).
∑

e:v∈e

(
B(v, e) + α

)
= ρα, for any v ∈ V(G).

(ii).
∏

v:v∈e
B(v, e) = (1 − α)k, for any e ∈ E(G).

Moreover, the incidence matrix B is called consistent if for any cycle v0e1v1 . . . vl (v0 = vl) of G, we have
l∏

i=1

B(vi,ei)
B(vi−1,ei)

= 1. In this case, we call G consistently ρα-normal.

Remark 3.2. For any supertree T , since T does not contain cycles, T satisfies the consistent condition naturally.

Lemma 3.3. Let G be a connected k-uniform hypergraph, where k ≥ 2. The α-spectral radius of G is ρα if and only
if G is consistently ρα-normal, where 0 ≤ α < 1.

Proof. Let V(G) = {v1, v2, · · · , vn}.
(1). The proof of necessity.
We suppose that the α-spectral radius of G is ρα. We will prove that G is consistently ρα-normal. Let

x = (x1, x2, · · · , xn)T be the α-Perror eigenvector of the α-spectral radius of G. We define the weighted
incidence matrix B as follows. Let

B(v, e) =
{ (1−α)xe

xk
v
, if v ∈ e,

0, otherwise.

(1.1). For any v ∈ V(G), we have∑
e:v∈e

(
B(v, e) + α

)
=

∑
e:v∈e

(
(1 − α)xe

xk
v

+ α

)
=
αdvxk

v + (1 − α)
∑

e:v∈e xe

xk
v

. (6)

By the eigenequation (3) of G at v, we get

ραxk
v = αdvxk

v + (1 − α)
∑
e:v∈e

xe. (7)

Therefore, by substituting (7) into (6), we get
∑

e:v∈e

(
B(v, e) + α

)
= ρα. Namely, we have Definition 3.1 (i).

(1.2). For any e ∈ E(G), we get∏
v:v∈e

B(v, e) =
∏
v:v∈e

(1 − α)xe

xk
v

= (1 − α)k
·

(xe)k∏
v:v∈e

xk
v
= (1 − α)k, (8)
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where the third equality in (8) holds since
∏

v:v∈e
xk

v = (xe)k. By (8), we have Definition 3.1 (ii).

Next, we prove that B is consistent. For any cycle v0e1v1 . . . vl (vl = v0) of G, we obtain

l∏
i=1

B(vi, ei)
B(vi−1, ei)

=

l∏
i=1

(1−α)xei

xk
vi

(1−α)xei

xk
vi−1

=

l∏
i=1

xk
vi−1

xk
vi

=
xk

v0

xk
vl

= 1. (9)

By (9), we get that G is consistently ρα-normal.
(2). The proof of sufficiency.
Suppose that G is consistently ρα-normal. We will prove that the α-spectral radius of G is ρα. Let

x = (x1, . . . , xn)T be an arbitrary nonzero vector in Rn
+.

For any e ∈ E(G), if
∏

v:v∈e
B(v, e) = (1 − α)k, then we have

(1 − α)
∑

e∈E(G)

k
1 − α

∏
v:v∈e

((B(v, e))
1
k xv) = (1 − α)

∑
e∈E(G)

kxe. (10)

By the Arithmetic Mean–Geometry Mean inequality, we get

∑
e∈E(G)

k
∏
v:v∈e

(B(v, e)
1
k xv) ≤

∑
e∈E(G)

∑
v:v∈e kB(v, e)xk

v

k
. (11)

Obviously, we have

α
∑

v∈V(G)

dvxk
v =

∑
v∈V(G)

∑
e:v∈e

αxk
v. (12)

By (4), (10)–(12) and Condition (i) in Definition 3.1, we have

xT(Aα(G)x) = α
∑

v∈V(G)

dvxk
v + (1 − α)

∑
e∈E(G)

kxe

≤

∑
v∈V(G)

∑
e:v∈e

(
α + B(v, e)

)
xk

v = ρα
∑

v∈V(G)

xk
v = ρα ∥ x ∥kk . (13)

Therefore, by (13) and the arbitrariness of x, we obtain ρα(G) ≤ ρα, with the equality if and only if G is
ρα-normal and the equality in (11) holds. Namely, there is a nonzero solution {xi} for the system of the
following homogeneous linear equations:

B(vi1 , e)
1
k xvi1

= B(vi2 , e)
1
k xvi2

= . . . = B(vik , e)
1
k xvik
,∀e = {vi1 , . . . , vik } ∈ E(G). (14)

Let v0 be an arbitrary vertex in V(G). For any u ∈ V(G), since G is connected, there exists a path

v0e1v1e2v2 . . . vl (vl = u) connecting v0 and u. Let x∗v0
= 1. For u ∈ V(G), we define x∗u =

(
l∏

i=1

B(vi−1,ei)
B(vi,ei)

) 1
k

.

The consistent condition guarantees that x∗u is independent of the choice of the path. We can check that
(x∗1, x

∗

2, · · · , x
∗
n) is a solution of (14). Thus, we have ρα(G) = ρα. □

Definition 3.4. Let k ≥ 2 and 0 ≤ α < 1. A connected k-uniform hypergraphG is called ρα-subnormal if there exists
a weighted incidence matrix B satisfying

(i).
∑

e:v∈e

(
B(v, e) + α

)
≤ ρα, for any v ∈ V(G).

(ii).
∏

v:v∈e
B(v, e) ≥ (1 − α)k, for any e ∈ E(G).

Moreover, G is called strictly ρα-subnormal if it is ρα-subnormal but not ρα-normal.



L. J. Yu, W. H. Wang / Filomat 39:9 (2025), 2861–2880 2866

Lemma 3.5. Let G be a connected k-uniform hypergraph, where k ≥ 2. If G is ρα-subnormal, then ρα(G) ≤ ρα,
where 0 ≤ α < 1. Moreover, if G is strictly ρα-subnormal, then ρα(G) < ρα.

Proof. Let x = (x1, . . . , xn)T be an arbitrary nonzero vector in Rn
+. For any e ∈ E(G), if

∏
v:v∈e

B(v, e) ≥ (1 − α)k,

then we have

(1 − α)
∑

e∈E(G)

k
1 − α

∏
v:v∈e

(
(B(v, e))

1
k xv

)
≥ (1 − α)

∑
e∈E(G)

kxe. (15)

By (4), (11), (12), (15), and Condition (i) in Definition 3.4, we have

xT(Aα(G)x) = α
∑

v∈V(G)

dvxk
v + (1 − α)

∑
e∈E(G)

kxe

≤

∑
v∈V(G)

∑
e:v∈e

(
α + B(v, e)

)
xk

v ≤ ρα
∑

v∈V(G)

xk
v = ρα ∥ x ∥kk . (16)

Therefore, by (16) and the arbitrariness of x, we obtain ρα(G) ≤ ρα. If G is strictly ρα-subnormal, then the
inequality in (15) or the second inequality in (16) holds. Thus, we get ρα(G) < ρα. □

Definition 3.6. Let k ≥ 2 and 0 ≤ α < 1. A connected k-uniform hypergraph G is called ρα-supernormal if there
exists a weighted incidence matrix B satisfying

(i).
∑

e:v∈e

(
B(v, e) + α

)
≥ ρα, for any v ∈ V(G).

(ii).
∏

v:v∈e
B(v, e) ≤ (1 − α)k, for any e ∈ E(G).

Moreover, G is called strictly ρα-supernormal if it is ρα-supernormal but not ρα-normal.

Lemma 3.7. Let G be a connected k-uniform hypergraph, where k ≥ 2. If G is consistently ρα-supernormal, then
ρα(G) ≥ ρα, where 0 ≤ α < 1. Moreover, if G is strictly consistently ρα-supernormal, then ρα(G) > ρα.

Proof. From the consistent condition of G and the proof of sufficiency of Lemma 3.3, there exists an
eigenvector x = (x1, x2, · · · , xn)T

∈ Rn
+ such that (14) holds. We have

∑
e∈E(G)

∏
v:v∈e

(
B(v, e)

1
k xv

)
=

∑
e∈E(G)

∑
v:v∈e B(v, e)xk

v

k
. (17)

For any e ∈ E(G), if
∏

v:v∈e
B(v, e) ≤ (1 − α)k, then we obtain

(1 − α)
∑

e∈E(G)

k
1 − α

∏
v:v∈e

((B(v, e))
1
k xv) ≤ (1 − α)

∑
e∈E(G)

kxe. (18)

By (4), (12), (17), (18), and Condition (i) in Definition 3.6, we get

xT(Aα(G)x) = α
∑

v∈V(G)

dvxk
v + (1 − α)

∑
e∈E(G)

kxe

≥

∑
v∈V(G)

∑
e:v∈e

(
α + B(v, e)

)
xk

v ≥ ρα
∑

v∈V(G)

xk
v = ρα ∥ x ∥kk . (19)

Therefore, by (19), we obtain ρα(G) ≥ xT(Aαx)
||x||kk

≥ ρα. If G is strictly consistently ρα-supernormal, then the

inequality in (18) or the second inequality in (19) holds. Thus, we get ρα(G) > ρα. □
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4. Comparing the α-spectral radii of some hypergraphs amongB(n, k)

In this section, we will use theρα-normal labeling method proposed in Section 3 to compare theα-spectral
radii of some hypergraphs among B(n, k).

Some definitions of hypergraphs inB(n, k) are introduced firstly. Let e1, e2, e3, and e4 be four edges with k
vertices, where k ≥ 3. Let e1 = {u1,u2,u3,wi1 , . . .wik−3 }, e2 = {u1,u2,u3,w′i1 , . . .w

′

ik−3
}, e3 = {u1,u2,u3,w′′i1 , . . .w

′′

ik−3
},

and e4 = {u1,u2,u3,w′′′i1
, . . .w′′′ik−3

}. Let A, B, C, D, and F be the five hypergraphs as shown in Fig. 2. In
A, u1 and u2 are simultaneously incident with e1, e2 and e3 and dA(v) = 1 for v ∈ V(A)\{u1,u2}. In B,
dB(u1) = dB(u2) = dB(u3) = 2 and dB(v) = 1 for v ∈ V(B)\{u1,u2,u3}. In C, dC(u1) = 4, dC(u2) = dC(u3) = 2
and dC(v) = 1 for v ∈ V(C)\{u1,u2,u3}. D is obtained from e1, e2, e3, and e4 by identifying u1 of e1, e3, and e4
together, identifying u2 of e2, e3, and e4 together, and identifying u3 of e1 and e2 together. F is obtained from
e1, e2, and e3 by identifying u1 of e1, e2, and e3 together, identifying u2 of e1 and e2 together, and identifying
u3 of e1 and e3 together.

A hyperstar with a edges, denoted by Sa (a ≥ 1), is a k-uniform supertee such that it has only one vertex
(denoted by u0) of degree a and all the other vertices have degree 1. Namely, in Sa, all the edges of Sa are
incident with the common vertex u0. We refer to u0 as the center vertex of Sa. For a hypergraph H and
v ∈ V(H), if we identify v of H with u0 of a hyperstar Sa, then we say that the resulting hypergraph is
obtained fromH by attaching Sa at v.

Let m = n+1
k−1 ≥ 5. We assume that a, b and c are nonnegative integers.

Let An,k(a, b) be the hypergraph obtained fromA by attaching hyperstars Sa and Sb at u1 and u2 of A,
respectively, where a ≥ b ≥ 0 and a + b + c = m − 3. An,k(a, b) is shown in Fig. 1. Let A′n,k(a, b, c) be the
hypergraph obtained fromAn,k(a, b) by attaching a hyperstarSc at a core vertex (denoted by u3) in e1, where
a ≥ b ≥ 0, c > 1 and a+b+c = m−3. LetA∗n,k(a, b, c) be the hypergraph obtained fromAn,k(a+1, b) by attaching
a hyperstarSc at a core vertex (denoted by u3) in an edge ofSa, where a, b ≥ 0, c > 1 and a+b+ c = m−4. Let
Bn,k(a, b, c), Cn,k(a, b, c), Dn,k(a, b, c), and Fn,k(a, b, c) be the hypergraphs obtained respectively from B, C, D,
and F by attaching hyperstars Sa, Sb and Sc at u1, u2 and u3. It is noted that a+ b+ c = m− 2 for Bn,k(a, b, c),
a+ b+ c = m− 4 for Cn,k(a, b, c), and a+ b+ c = m− 3 forDn,k(a, b, c) and Fn,k(a, b, c). For example,A′n,k(a, b, c),
A∗n,k(a, b, c), Bn,k(a, b, c), Cn,k(a, b, c),Dn,k(a, b, c), and Fn,k(a, b, c) are shown in Fig. 3.

For simplicity, letAn,k(m−3, 0) = A(1)
n,k with m ≥ 4,An,k(m−4, 1) = A(2)

n,k with m ≥ 5, A′n,k(0, 0,m−3) = A(3)
n,k

with m ≥ 4, Bn,k(m − 2, 0, 0) = B(1)
n,k with m ≥ 3, Bn,k(m − 3, 1, 0) = B(2)

n,k with m ≥ 4, Cn,k(m − 4, 0, 0) = Cn,k with

m ≥ 5, and Fn,k(m − 3, 0, 0) = Fn,k with m ≥ 4. Let B(3)
n,k be the hypergraph obtained from B by attaching a

hyperstar Sm−2 at a core vertex (denoted by u4) in e1, where m ≥ 3. B(3)
n,k is shown in Fig. 4.

For a hypergraphH ∈ B(n, k), if we repeatedly delete the pendent edges ofH , then we get a resulting
hypergraph such that it has no pendent edges. We denote the resulting hypergraph by Ĥ and call Ĥ the
base hypergraph ofH . SinceH is a connected 2-cyclic hypergraph, the number of IVs in Ĥ is at least two.
According to the numbers of the IVs in H , we have B(n, k) =

⋃n
i=2Bi(n, k), where Bi(n, k) is the subset of

B(n, k) in which each hypergraph has exactly i IVs, where i ≥ 2. Obviously, if i = 2, since H is a bicyclic
hypergraph, the two IVs of H must be incident with three common edges, namely Ĥ = A. Furthermore,
ifH ∈ B2(n, k), when m = n+1

k−1 ≥ 4, we getH = An,k(a, b). IfH ∈ B3(n, k), sinceH is a bicyclic hypergraph,

bearing Lemma 2.7 in mind, we get Ĥ = {A,B,C,D,F }. Thus, we have

B3(n, k) = {A′n,k(a, b, c),A∗n,k(a, b, c),Bn,k(a, b, c),Cn,k(a, b, c),Dn,k(a, b, c),Fn,k(a, b, c)}. (20)

Ouyang et al. [16] obtained the hypergraphs with the first, the second, and the third largest spectral
radii among B(n, k), which are shown in Lemma 4.1.

Lemma 4.1. [16] LetH ∈ B(n, k) \ {A(1)
n,k,B

(1)
n,k,A

(2)
n,k}, where k ≥ 4 and m = n+1

k−1 ≥ 5. We have ρ
(
A

(1)
n,k

)
= ρ

(
B

(1)
n,k

)
>

ρ
(
A

(2)
n,k

)
> ρ(H).
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Figure 1: Bicyclic hypergraphs with two IVs: An,k(a, b)
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Figure 2: The base hypergraphs of bicyclic hypergraphs with three IVs

To obtain the hypergraphs with the larger α-spectral radii among B(n, k), we introduce Lemmas 4.2–5.8
firstly.

Lemma 4.2. Let k ≥ 4 and m = n+1
k−1 ≥ 20. We have ρα

(
A

(1)
n,k

)
≥ ρα

(
B

(1)
n,k

)
> max{ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} with the

equality if and only if α = 0.

Proof. Let k ≥ 4 and m = n+1
k−1 ≥ 20.

InBn,k(a, b, c) (as shown in Fig. 3(c)), let a = m−3 and b = c = 0. Namely, we getB(1)
n,k. Let v1 and v2 be the

two core vertices among B(1)
n,k which are respectively incident with e1 and a pendent edge incident with u1,

where v1 and v2 of B(1)
n,k are shown in Fig. 3(c). Let ρ∆α = ρα

(
B

(1)
n,k

)
and x = (x1, . . . , xn)T

∈ Rn
++ be the α-Perron

vector of ρ∆α . We suppose that B(1)
n,k is consistently ρ∆α -normal. By the eigenequations (3) of B(1)

n,k at v1, v2, u1,
and u2 and bearing the symmetry of the entries in x in mind, we get

ρ∆αxk−1
v1
= αxk−1

v1
+ (1 − α)xk−4

v1
xu1 x2

u2
, (21)

ρ∆αxk−1
v2
= αxk−1

v2
+ (1 − α)xk−2

v2
xu1 , (22)

ρ∆αxk−1
u1
= mαxk−1

u1
+ (m − 2)(1 − α)xk−1

v2
+ 2(1 − α)xk−3

v1
x2

u2
, (23)

ρ∆αxk−1
u2
= 2αxk−1

u2
+ 2(1 − α)xk−3

v1
xu1 xu2 . (24)

From (21), we have ρ∆α − α > 0 when x ∈ Rn
++ and 0 ≤ α < 1. For simplicity, let

A0 =
1 − α
ρ∆α − α

, A1 = (ρ∆α − α)Ak
0. (25)

Thus we have A0 > 0 and A1 > 0 since ρ∆α − α > 0 and 0 ≤ α < 1. Furthermore, it follows from (21), (22) and
(25) that

xv1 = (A0xu1 x2
u2

)
1
3 , xv2 = A0xu1 . (26)
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Figure 3: Bicyclic hypergraphs with three IVs.
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By combining (24) with (26), we get

ρ∆α > 2α, (since 0 ≤ α < 1 and x ∈ Rn
++), (27)

xu2 =
2

3
k (1 − α)

(ρ∆α − 2α)
3
k (ρ∆α − α)1− 3

k

xu1 . (28)

For simplicity, let

B1 =
(ρ∆α − α)2

(ρ∆α − 2α)2
A1, B2 =

ρ∆α − α

ρ∆α − 2α
A1. (29)

By substituting (25), (26), (28), and (29) into (23), we obtain

ρ∆α = mα + (m − 2)A1 + 8B1. (30)

From (29), we get B1 ≥ B2 > 0 since A1 > 0 and ρ∆α −α ≥ ρ∆α −2α > 0 (by (27)). Since A1, B1 > 0 and 0 ≤ α < 1,
by (30), when m ≥ 20, we obtain

ρ∆α − 3α = (m − 3)α + (m − 2)A1 + 8B1 > 0. (31)

(1.1). The proof of ρα
(
A

(1)
n,k

)
≥ ρα

(
B

(1)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

InAn,k(a, b) (as shown in Fig. 1), let a = m − 3 and b = 0 and we getA(1)
n,k. The vertices u1, u2, v1, v2, and

v3 ofA(1)
n,k and the edges e1, e2 and e3 ofA(1)

n,k are shown in Fig. 1. Let e4, e5, · · · , em be the m− 3 pendent edges

ofA(1)
n,k attached at u1. We construct a weighted incidence matrix B forA(1)

n,k as follows. Let B(v, ei) = ρ∆α − α,

where v is an arbitrary core vertex in V
(
A

(1)
n,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v. Furthermore, let

B(u1, e1) = B(u1, e2) = B(u1, e3) =
3(ρ∆α − α)

ρ∆α − 3α
A1,

B(u1, ei) = A1, where 4 ≤ i ≤ m,

B(u2, e1) = B(u2, e2) = B(u2, e3) =
1
3
ρ∆α − α.

When m ≥ 20, since A1 > 0 and ρ∆α − α > ρ∆α − 3α > 0 (by (31)), we have B(v, e) > 0, where v is an
arbitrary vertex inA(1)

n,k and e is the edge incident with v inA(1)
n,k. We can check

∏
v:v∈e

B(v, e) = (1 − α)k, where

e = ei (1 ≤ i ≤ m) is an arbitrary edge in E
(
A

(1)
n,k

)
. For any core vertex v ∈ V

(
A

(1)
n,k

)
and v = u2, we have∑

e:v∈e

(
B(v, e) + α

)
= ρ∆α .

Next, we compare
∑

e:u1∈e

(
B(u1, e) + α

)
with ρ∆α . Since ρ∆α − α ≥ ρ∆α − 3α > 0 and A1 > 0, we obtain

ρ∆α−α

ρ∆α−3αA1 ≥ A1. Considering (ρ∆α − 2α)2
≥ (ρ∆α −α)(ρ∆α − 3α) > 0 and A1 > 0, we have ρ∆α−α

ρ∆α−3αA1 ≥
(ρ∆α−α)2

(ρ∆α−2α)2 A1 = B1

(by (29)). Therefore, by (30), we get

ρ∆α −
∑

e:u1∈e

(
B(u1, e) + α

)
= ρ∆α −

(
3B(u1, e1) + (m − 3)B(u1, e4) +mα

)
= A1 + 8B1 −

9(ρ∆α − α)

ρ∆α − 3α
A1 ≤ 0. (32)

It is noted that the third equality in (32) holds if and only if α = 0. Therefore, if 0 < α < 1, A(1)
n,k is strictly

ρ∆α -supernormal. Next, we verify that B is consistent. For the three cycles u1e1u2e2u1, u1e1u2e3u1, and
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u1e2u2e3u1 inA(1)
n,k, we have B(u2,e1)

B(u1,e1)
B(u1,e2)
B(u2,e2) = 1, B(u2,e1)

B(u1,e1)
B(u1,e3)
B(u2,e3) = 1, and B(u2,e2)

B(u1,e2)
B(u1,e3)
B(u2,e3) = 1, respectively. By Lemma

3.7, we obtain ρα
(
A

(1)
n,k

)
> ρ∆α = ρα

(
B

(1)
n,k

)
for 0 < α < 1. If α = 0, from Lemma 4.1, we have ρα

(
A

(1)
n,k

)
= ρα

(
B

(1)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 5.
(1.2). The proof of ρα

(
B

(1)
n,k

)
> ρα

(
Cn,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.
In Cn,k(a, b, c) (as shown in Fig. 3(d)), let a = m− 4 and b = c = 0 and we get Cn,k. The vertices u1, u2, u3 of

Cn,k and the edges e1, e2, e3, and e4 of Cn,k are shown in Fig. 3(d). Let e5, e6, · · · , em be the m− 4 pendent edges
of Cn,k attached at u1. We construct a weighted incidence matrix B for Cn,k as follows. Let B(v, ei) = ρ∆α − α,
where v is an arbitrary core vertex in V

(
Cn,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v. Furthermore, let

B(u1, e1) = B(u1, e3) = B(u1, e2) = B(u1, e4) = 2B2,

B(u1, ei) = A1, where 5 ≤ i ≤ m,

B(u2, e1) = B(u2, e2) = B(u3, e3) = B(u3, e4) =
1
2
ρ∆α − α.

Since A1, B2 > 0 and ρ∆α − 2α > 0 (by (27)), we get B(v, e) > 0 for any vertex v and any edge e incident with v
in Cn,k. We can check

∏
v:v∈e

B(v, e) = (1 − α)k, where e = ei (1 ≤ i ≤ m) is an arbitrary edge in E
(
Cn,k

)
. For any

core vertex v ∈ V
(
Cn,k

)
, v = u2 and v = u3, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ∆α .

Next, we compare
∑

e:u1∈e

(
B(u1, e) + α

)
with ρ∆α . By (30), we get

ρ∆α −
∑

e:u1∈e

(
B(u1, e) + α

)
= ρ∆α −

[
4B(u1, e1) + (m − 4)B(u1, e5) +mα

]
= 2A1 + 8B1 − 8B2 > 0. (33)

It is noted that (33) is deduced from A1 > 0 and B1 ≥ B2 > 0 (by (29)). Therefore,Cn,k is strictly ρ∆α -subnormal.
By Lemma 3.5, we obtain ρ∆α = ρα

(
B

(1)
n,k

)
> ρα

(
Cn,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

(1.3). The proof of ρα
(
B

(1)
n,k

)
> ρα

(
Fn,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.
InFn,k(a, b, c) (as shown in Fig. 3(f)), let a = m−3 and b = c = 0 and we getFn,k. The vertices u1, u2, and u3

of Fn,k and the edges e1, e2 and e3 of Fn,k are shown in Fig. 3(f). Let e4, e5, · · · , em be the m − 3 pendent edges
of Fn,k attached at u1. We construct a weighted incidence matrix B for Fn,k as follows. Let B(v, ei) = ρ∆α − α,
where v is an arbitrary core vertex in V

(
Fn,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v. Furthermore, let

B(u1, e1) = 4B1, B(u1, e2) = B(u1, e3) = 2B2,

B(u1, ei) = A1, where 4 ≤ i ≤ m,

B(u2, e1) = B(u2, e2) = B(u3, e1) = B(u3, e3) =
1
2
ρ∆α − α.

Since A1,B1,B2 > 0 and ρ∆α − 2α > 0 (by (27)), we can check that B(v, e) > 0 for any vertex v and any edge e
incident with v in Fn,k. It can be verified that

∏
v:v∈e

B(v, e) = (1 − α)k, where e = ei (1 ≤ i ≤ m) is an arbitrary

edge in E
(
Fn,k

)
. For any core vertex v ∈ V

(
Fn,k

)
, v = u2 and v = u3, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ∆α .

Next, we compare
∑

e:u1∈e

(
B(u1, e) + α

)
with ρ∆α . By (30), we get

ρ∆α −
∑

e:u1∈e

(
B(u1, e) + α

)
= ρ∆α −

(
B(u1, e1) + 2B(u1, e2) + (m − 3)B(u1, e4) +mα

)
= A1 + 4B1 − 4B2 > 0. (34)

It is noted that (34) follows from B1 ≥ B2 > 0 (by (29)) and A1 > 0. By (34), we obtain that Fn,k is strictly
ρ∆α -subnormal. By Lemma 3.5, we get ρ∆α = ρα

(
B

(1)
n,k

)
> ρα

(
Fn,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20. □
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Lemma 4.3. Let k ≥ 4 and m = n+1
k−1 ≥ 20. We have ρα

(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> max{ρα

(
B

(2)
n,k

)
, ρα

(
A

(3)
n,k

)
, ρα

(
B

(3)
n,k

)
}.

Proof. InAn,k(a, b) (as shown in Fig. 1), let a = m−4 and b = 1 and we getA(2)
n,k. The vertices u1, u2, v1, v2, and

v3 ofA(2)
n,k and the edges e1, e2 and e3 ofA(2)

n,k are shown in Fig. 1, where v1 , v2 and v3 are three core vertices
which are respectively incident with e1, a pendent edge incident with u1 and the pendent edge incident
with u2 of A(2)

n,k. Let e4, e5, · · · , em be the m − 3 pendent edges of A(2)
n,k attached at u1. Let ρ◦α = ρα

(
A

(2)
n,k

)
and

x = (x1, . . . , xn)T
∈ Rn

++ be the α-Perron vector of ρ◦α. We suppose thatA(2)
n,k is consistently ρ◦α-normal. By the

eigenequations (3) ofA(2)
n,k at v1, v2, v3 , u1, and u2 and bearing the symmetry of the entries in x in mind, we

get

ρ◦αx
k−1
v1
= αxk−1

v1
+ (1 − α)xk−3

v1
xu1 xu2 , (35)

ρ◦αx
k−1
v2
= αxk−1

v2
+ (1 − α)xk−2

v2
xu1 , (36)

ρ◦αx
k−1
v3
= αxk−1

v3
+ (1 − α)xk−2

v3
xu2 , (37)

ρ◦αx
k−1
u1
= (m − 1)αxk−1

u1
+ (m − 4)(1 − α)xk−1

v2
+ 3(1 − α)xk−2

v1
xu2 , (38)

ρ◦αx
k−1
u2
= 4αxk−1

u2
+ (1 − α)xk−1

v3
+ 3(1 − α)xk−2

v1
xu1 . (39)

From (35), we have ρ◦α − α > 0 when x ∈ Rn
++ and 0 ≤ α < 1. Furthermore, it follows from (35)–(37) that,

respectively,

xv1 =

√
1 − α
ρ◦α − α

xu1 xu2 , xv2 =
1 − α
ρ◦α − α

xu1 , xv3 =
1 − α
ρ◦α − α

xu2 . (40)

By combining (39) with (40), we get

ρ∆α − 4α −
(1 − α)k

(ρ◦α − α)k−1
> 0, (since 0 ≤ α < 1, ρ◦ − α > 0 and x ∈ Rn

++), (41)

xu2 =
3

2
k (1 − α)

(ρ◦α − 4α − (1−α)k

(ρ◦α−α)k−1 )
2
k (ρ◦α − α)1− 2

k

xu1 . (42)

For simplicity, let

A2 =
(1 − α)k

(ρ◦α − α)k−1
, C1 =

ρ◦α − α

ρ◦α − 4α − A2
A2, C2 =

(ρ◦α − α)2

(ρ◦α − 2α)2 A2,

C3 =
ρ◦α − α

ρ◦α − 2α
A2, C4 =

ρ◦α − α

ρ◦α − 3α
A2. (43)

By (41) and (43), we have

ρ◦α − α ≥ ρ
◦

α − 2α ≥ ρ◦α − 3α > ρ◦α − 4α − A2 > 0. (44)

From (43) and (44), we get

C1 > C4 ≥ C3 ≥ A2 > 0, C2 ≥ A2 > 0. (45)

By substituting (40), (42) and (43) into (38), we obtain

ρ◦α = (m − 1)α + (m − 4)A2 + 9C1. (46)

When m ≥ 20, it follows from A2,C1 > 0, 0 ≤ α < 1 and (46) that

ρ◦α = (m − 1)α + (m − 4)A2 + 9C1 ≥ 19α + 16A2 + 9C1. (47)
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(1.1). The proof of ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

It is noted that B(1)
n,k is shown in Fig. 3(c) with a = m − 2 and b = c = 0. In B(1)

n,k, let e3, e4, · · · , em be the

m − 2 pendent edges attached at u1. We construct a weighted incidence matrix B for B(1)
n,k as follows. Let

B(v, ei) = ρ◦α − α, where v is an arbitrary core vertex in V
(
B

(1)
n,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v.

Furthermore, let

B(u1, e1) = B(u1, e2) = 4C2, B(u1, ei) = A2, where 3 ≤ i ≤ m,

B(u2, e1) = B(u2, e2) = B(u3, e1) = B(u3, e2) =
1
2
ρ◦α − α.

Since A2,C2 > 0 and ρ◦α − 2α > 0 (by (44)), we get B(v, e) > 0 for any vertex v and any edge e incident with v
in B(1)

n,k. We have
∏

v:v∈e
B(v, e) = (1 − α)k for an arbitrary edge e = ei (1 ≤ i ≤ m) in E

(
B

(1)
n,k

)
. For any core vertex

v ∈ V
(
B

(1)
n,k

)
, v = u2 and v = u3, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ◦α.

Next, we compare
∑

e:u1∈e

(
B(u1, e) + α

)
with ρ◦α. By (46), we get

ρ◦α −
∑

e:u1∈e

(
B(u1, e) + α

)
= ρ◦α −

(
2B(u1, e1) + (m − 2)B(u1, e3) +mα

)
= −α + 9C1 − 8C2 − 2A2

= −α +D1

[
− (ρ◦α)

2(ρ◦α − 19α − 10A2) − α2(40ρ◦α − 28α − 16A2) − 24A2αρ
◦

α

]
,

where D1 =
A2

(ρ◦α−4α−A2)(ρ◦α−2α)2 . Since A2 > 0 and ρ◦α − 2α > ρ◦α − 4α − A2 > 0 (by (44)), we get D1 > 0.

From (47), we have ρ◦α −
∑

e:u1∈e

(
B(u1, e) + α

)
< 0. Next, we verify that B is consistent. In B(1)

n,k, for the

three cycles u1e1u2e2u1, u1e1u3e2u1, and u2e1u3e2u2, we can check B(u2,e1)
B(u1,e1)

B(u1,e2)
B(u2,e2) = 1, B(u3,e1)

B(u1,e1)
B(u1,e2)
B(u3,e2) = 1, and

B(u3,e1)
B(u2,e1)

B(u2,e2)
B(u3,e2) = 1, respectively. Therefore, B(1)

n,k is strictly and consistently ρ◦α-supernormal. By Lemma 3.7,

we obtain ρα
(
B

(1)
n,k

)
> ρ◦α = ρα

(
A

(2)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

(1.2). The proof of ρα
(
A

(2)
n,k

)
> ρα

(
B

(2)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

In Bn,k(a, b, c) (as shown in Fig. 3(c)), let a = m − 3, b = 1 and c = 0 and we get B(2)
n,k. In B(2)

n,k, let v1 and v2

be the two core vertices which are respectively incident with e1 and a pendent edge incident with u1, where
the vertices v1, v2, u1, u2, and u3 of B(2)

n,k and the edges e1 and e2 of B(2)
n,k are shown in Fig. 3(c). In B(2)

n,k, let
e3, e4, · · · , em−1 be the m − 3 pendent edges incident with u1 and em be the pendent edge incident with u2.
We construct a weighted incidence matrix B for B(2)

n,k as follows. Let B(v, ei) = ρ◦α − α, where v is an arbitrary

core vertex in V
(
B

(2)
n,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v. Furthermore, let

B(u1, e1) = B(u1, e2) =
4(ρ◦α − 2α)
ρ◦α − 3α − A2

C2, B(u1, ei) = A2, where 3 ≤ i ≤ m − 1,

B(u2, e1) = B(u2, e2) =
1
2

(ρ◦α − 3α − A2), B(u2, em) = A2,

B(u3, e1) = B(u3, e2) =
1
2

(ρ◦α − 2α).

Since A2,C2 > 0 and ρ◦α − 2α > ρ◦α − 3α−A2 ≥ ρ◦α − 4α−A2 > 0 (by (44)), we have B(v, e) > 0 for any vertex v
and any edge e incident with v in B(2)

n,k. We get
∏

v:v∈e
B(v, e) = (1 − α)k, where e = ei (1 ≤ i ≤ m) is an arbitrary

edge in E
(
B

(2)
n,k

)
. For any core vertex v ∈ V

(
B

(2)
n,k

)
, v = u2 and v = u3, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ◦α.
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Next, we compare
∑

e:u1∈e

(
B(u1, e) + α

)
with ρ◦α. By (46), we have

ρ◦α −
∑

e:u1∈e

(
B(u1, e) + α

)
= ρ◦α −

[
2B(u1, e1) + (m − 3)B(u1, e3) + (m − 1)α

]
= 9C1 −

8(ρ◦α − 2α)
ρ◦α − 3α − A2

C2 − A2

= D2(A2α + 2α2) +D3(3α + A2), (48)

where D2 =
8(ρ◦α−α)A2

(ρ◦α−2α)(ρ◦α−3α−A2)(ρ◦α−4α−A2) and D3 =
A2

ρ◦α−4α−A2
. Owing to A2 > 0 and ρ◦α−α ≥ ρ◦α−2α > ρ◦α−3α−A2 ≥

ρ◦α − 4α − A2 > 0 (by (44)), we get D2,D3 > 0. Therefore, it follows from A2,D2,D3 > 0, 0 ≤ α < 1 and
(48) that ρ◦α −

∑
e:u1∈e

(
B(u1, e) + α

)
> 0. Hence, B(2)

n,k is strictly ρ◦α-subnormal. By Lemma 3.5, we obtain

ρα
(
A

(2)
n,k

)
= ρ◦α > ρα

(
B

(2)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

(1.3). The proof of ρα
(
A

(2)
n,k

)
> ρα

(
A

(3)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

In A′n,k(a, b, c) (as shown in Fig. 3(a)), let a = b = 0 and c = m − 3 and we get A(3)
n,k. The vertices u1, u2

and u3 of A(3)
n,k and the edges e1, e2 and e3 of A(3)

n,k are shown in Fig. 3(a). In A(3)
n,k, let e4, e5, · · · , em be the

m− 3 pendent edges incident with u3. ForA(3)
n,k, we construct a weighted incidence matrix B as follows. Let

B(v, ei) = ρ◦α − α, where v is an arbitrary core vertex in V
(
A

(3)
n,k

)
and ei (1 ≤ i ≤ m) is the edge incident with v.

Furthermore, let

B(u1, e1) = ρ◦α − 3α − 6C4, B(u1, e2) = B(u1, e3) = 3C4,

B(u2, e1) = B(u2, e2) = B(u2, e3) =
1
3

(ρ◦α − 3α),

B(u3, e1) =
3(ρ◦α − α)

ρ◦α − 3α − 6C4
C4, B(u3, ei) = A2 where 4 ≤ i ≤ m.

From (43), we obtain C1 =
ρ◦α−α

ρ◦α−4α−A2
A2 >

ρ◦α−α
ρ◦α−3αA2 = C4 > 0. It follows from (47) and C1 > C4 that

ρ◦α − 3α − 6C4 > ρ
◦

α − 3α − 6C1 > 16α + 16A2 + 3C1 > 0. (49)

Since C4 > 0, ρ◦α − 3α > 0 (by (44)) and ρ◦α − 3α− 6C4 > 0, we obtain B(v, e) > 0 for any vertex v and any edge
e incident with v in A(3)

n,k. It is easy to check
∏

v:v∈e
B(v, e) = (1 − α)k for an arbitrary edge e = ei (1 ≤ i ≤ m) in

E
(
A

(3)
n,k

)
. For any core vertex v ∈ V

(
A

(3)
n,k

)
and v = u1,u2, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ◦α.

Next, we compare
∑

e:u3∈e

(
B(u3, e) + α

)
with ρ◦α. By (46), we have

ρ◦α −
∑

e:u3∈e

(
B(u3, e) + α

)
= ρ◦α −

[
B(u3, e1) + (m − 3)B(u3, e4) + (m − 2)α

]
= α + 9C1 −

3(ρ◦α − α)
ρ◦α − 3α − 6C4

C4 − A2

> 8C4 −
3(ρ◦α − α)

ρ◦α − 3α − 6C4
C4 (50)

=
5C4

ρ◦α − 3α − 6C4

(
ρ◦α −

21
5
α −

48
5

C4

)
.

It is noted that (50) follows from C1 > C4 (by (43)) and C1 > A2 (by (45)). Since A2,C1 > 0, from (47), we
have ρ◦α − 19α ≥ 0. Therefore, 3

2 A2 − C4 =
A2

2(ρ◦α−3α) (ρ
◦
α − 7α) > 0. Namely, 3

2 A2 > C4. Therefore, by (47), we
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have ρ◦α ≥ 19α + 16A2 + 9C1 > 19α + 16A2 + 9C4 > 21
5 α +

48
5 C4. Furthermore, since C4 > 0 (by (45)) and

ρ◦α − 3α − 6C4 > 0 (by (49)), we have ρ◦α >
∑

e:u3∈e

(
B(u3, e) + α

)
. Thus,A(3)

n,k is strictly ρ◦α-subnormal. By Lemma

3.5, we obtain ρα
(
A

(2)
n,k

)
= ρ◦α > ρα

(
A

(3)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

(1.4). The proof of ρα
(
A

(2)
n,k

)
> ρα

(
B

(3)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20.

InB(3)
n,k, the vertices u1, u2, u3, and u4 and the edges e1 and e2 are shown in Fig. 3(c). InB(3)

n,k, let e3, e4, · · · , em

be the m−2 pendent edges incident with u4. ForB(3)
n,k, we construct a weighted incidence matrix B as follows.

Let B(v, ei) = ρ◦α −α, where v is an arbitrary core vertex in V
(
B

(3)
n,k

)
and ei (1 ≤ i ≤ m) is the edge incident with

v. Furthermore, let

B(u1, e1) = ρ◦α − 2α − 4C2, B(u1, e2) = 4C2,

B(u2, e1) = B(u2, e2) = B(u3, e1) = B(u3, e2) =
1
2

(ρ◦α − 2α),

B(u4, e1) =
4(ρ◦α − α)

ρ◦α − 2α − 4C2
C2, B(u4, ei) = A2, where 3 ≤ i ≤ m.

Since 0 ≤ α < 1, ρ◦α − α > 0 and A2 > 0, we get (ρ◦α − 2α)2 > (ρ◦α − α)(ρ◦α − 4α − A2). Therefore, we obtain

C1 =
ρ◦α − α

ρ◦α − 4α − A2
A2 >

(ρ◦α − α)2

(ρ◦α − 2α)2 A2 = C2. (51)

Thus, by (47), we have

ρ◦α − 2α − 4C2 > ρ
◦

α − 2α − 4C1 ≥ 17α + 16A2 + 5C1 > 0. (52)

Since A2,C2 > 0, ρ◦α − α, ρ◦α − 2α > 0 (by (44)) and ρ◦α − 2α− 4C2 > 0, we have B(v, e) > 0 for any vertex v and
any edge e incident with v in B(3)

n,k. We can check
∏

v:v∈e
B(v, e) = (1 − α)k for any e = ei (1 ≤ i ≤ m) in E

(
B

(3)
n,k

)
.

For any core vertex v ∈ V
(
B

(3)
n,k

)
and v = u1,u2,u3, we have

∑
e:v∈e

(
B(v, e) + α

)
= ρ◦α.

Next, we compare
∑

e:u4∈e

(
B(u4, e) + α

)
with ρ◦α. By (46), we obtain

ρ◦α −
∑

e:u4∈e

(
B(u4, e) + α

)
= ρ◦α −

[
B(u4, e1) + (m − 2)B(u4, e3) + (m − 1)α

]
= 9C1 −

4(ρ◦α − α)
ρ◦α − 2α − 4C2

C2 − 2A2

≥ 9C2 −
6(ρ◦α − α)

ρ◦α − 2α − 4C2
C2 (53)

=
3C2

ρ◦α − 2α − 4C2
(ρ◦α − 4α − 12C2). (54)

It is noted that (53) follows from C1 > C2 (by (51)) and (ρ◦α−α)
ρ◦α−2α−4C2

C2 =
(ρ◦α−α)3

(ρ◦α−2α)2(ρ◦α−2α−4C2) A2 > A2. Since C1 > 0,
by (47), we get

3
2

A2 − C2 =
A2

(ρ◦α − 2α)2

(1
2
ρ◦α(ρ

◦

α − 8α) + 5α2
)
> 0.

Namely, 3
2 A2 > C2. It follows from C1 > C2 (by (51)), 3

2 A2 > C2 and (47) that ρ◦α−4α−12C2 ≥ 15α+ 23
2 A2 > 0.

Furthermore, since C2 > 0 and ρ◦α − 2α− 4C2 > 0 (by (52)), by (54), we get ρ◦α >
∑

e:u4∈e

(
B(u4, e)+ α

)
. Thus, B(3)

n,k

is strictly ρ◦α-subnormal. By Lemma 3.5, we obtain ρα
(
A

(2)
n,k

)
= ρ◦α > ρα

(
B

(3)
n,k

)
for k ≥ 4 and m = n+1

k−1 ≥ 20. □
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5. The hypergraphs with the first and the second largest α-spectral radii amongB(n, k)

In this section, we will characterize the hypergraphs with the first and the second largest α-spectral radii
among B(n, k). To obtain our results, Lemmas 5.1–5.8 are needed.

Lemma 5.1. We have ρα
(
An,k(a + 1, b − 1)

)
> ρα

(
An,k(a, b)

)
, where k ≥ 3, a ≥ b ≥ 1 and a + b = m − 3.

Proof. Let x = (x1, . . . , xn)T be the α-Perron vector of ρα
(
An,k(a, b)

)
. If xu1 ≥ xu2 , in An,k(a, b), by removing

one pendent edge from u2 to u1, we getAn,k(a + 1, b − 1). By Lemma 2.6, we get Lemma 5.1. If xu2 > xu1 , in
An,k(a, b), by removing a− b+ 1 pendent edges from u1 to u2, we obtainAn,k(a+ 1, b− 1). By Lemma 2.6, we
also have Lemma 5.1. □

Corollary 5.2. We have ρα
(
A

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
≥ ρα

(
An,k(a, b)

)
with the equality if and only if An,k(a, b) = A(2)

n,k,
where k ≥ 3, a ≥ b ≥ 1 and a + b = m − 3.

Proof. By repeatedly using Lemma 5.1 and bearing the definitions ofA(1)
n,k andA(2)

n,k in mind, we get Corollary
5.2. □

By the methods similar to those for Lemma 5.1, we have Lemma 5.3 as follows.

Lemma 5.3. We have ρα
(
Bn,k(a + 1, b − 1, 0)

)
> ρα

(
Bn,k(a, b, 0)

)
, where k ≥ 4, a ≥ b ≥ 1 and a + b = m − 2.

By the methods similar to those for Corollary 5.2, we obtain Corollary 5.4.

Corollary 5.4. We have ρα
(
B

(1)
n,k

)
> ρα

(
B

(2)
n,k

)
≥ ρα

(
Bn,k(a, b, 0)

)
with the equality if and only if Bn,k(a, b, 0) = B(2)

n,k,
where k ≥ 4, a ≥ b ≥ 1 and a + b = m − 2.

Lemma 5.5. Let H ∈ B3(n, k) \ {B(1)
n,k,Cn,k,Fn,k}, where k ≥ 4 and m = n−1

k−1 ≥ 20. We have ρα
(
B

(1)
n,k

)
>

max{ρα
(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} > ρα(H), where 0 ≤ α < 1.

Proof. Let k ≥ 4 and m = n−1
k−1 ≥ 20. Six cases are considered as follows.

Case (1). H = A′n,k(a, b, c).
By the definition of A′n,k(a, b, c), we have c ≥ 1. Let a ≥ b. If a = b = 0, then H = A(3)

n,k. By Lemma 4.3,

we have ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
A

(3)
n,k

)
. Namely, Lemma 5.5 holds when a = b = 0. Next, let a ≥ 1. In

A
′
n,k(a, b, c), if xu2 ≥ xu3 , then by removing all the edges incident with u3 from u3 to u2, we getAn,k(a, b + c),

where a ≥ 1 and b + c ≥ 1. By Lemma 2.6, we have ρα
(
An,k(a, b + c)

)
> ρα

(
A
′
n,k(a, b, c)

)
. In A′n,k(a, b, c), if

xu2 < xu3 , then by removing all the edges incident with u2 (except for e1) from u2 to u3, we getAn,k(a, b + c),
where a ≥ 1 and b + c ≥ 1. By Lemma 2.6, we obtain ρα

(
An,k(a, b + c)

)
> ρα

(
A
′
n,k(a, b, c)

)
. Since a ≥ 1 and

b+c ≥ 1, by Corollary 5.2, we obtain ρα
(
A

(2)
n,k

)
≥ ρα

(
An,k(a, b+c)

)
. By Lemma 4.3, we have ρα

(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
.

Thus, we get ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
A
′
n,k(a, b, c)

)
with a ≥ 1.

Case (2). H = A∗n,k(a, b, c).
By the definition of A∗n,k(a, b, c), we have c ≥ 1. In A∗n,k(a, b, c), if xu2 ≥ xu3 , then by removing all the

pendent edges incident with u3 from u3 to u2, we getAn,k(a+ 1, b+ c), where a ≥ 0 and b+ c ≥ 1. By Lemma
2.6, we obtain ρα

(
An,k(a + 1, b + c)

)
> ρα

(
A
∗

n,k(a, b, c)
)
. In A∗n,k(a, b, c), if xu2 < xu3 , by removing all the edges

incident with u2 (except for e1) from u2 to u3, we also obtainAn,k(a + 1, b + c), where a ≥ 0 and b + c ≥ 1. By
Lemma 2.6, we get ρα

(
An,k(a+ 1, b+ c)

)
> ρα

(
A
∗

n,k(a, b, c)
)
. Furthermore, by the methods similar to those for

the proofs of Case (1), we get Lemma 5.5.
Case (3). H = Bn,k(a, b, c) andH , B(1)

n,k.

In Bn,k(a, b, c), without loss of generality, let a ≥ b ≥ c. Since H , B(1)
n,k, at least two of a, b and c are

nonzero. Two subcases are considered as follows.
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Subcase (3.1). c = 0.
Since H , B(1)

n,k, we have b ≥ 1. If b = 1 and c = 0, then H = B(2)
n,k. By Lemma 4.3, we have

ρα
(
B

(1)
n,k

)
> ρα

(
B

(2)
n,k

)
. Namely, Lemma 5.5 holds when b = 1 and c = 0. Let b ≥ 2. Since a ≥ b, we have a ≥ 2.

In Bn,k(a, b, c), by the symmetry, without loss of generality, let xu1 ≥ xu2 . We remove the b− 1 pendent edges
incident with u2 from u2 to u1 and getB(2)

n,k. By Lemma 2.6, we have ρα
(
B

(2)
n,k

)
> ρα

(
Bn,k(a, b, c)

)
. Furthermore,

it follows from Lemma 4.3 that ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
B

(2)
n,k

)
> ρα

(
Bn,k(a, b, c)

)
when Bn,k(a, b, c) , B(1)

n,k,B
(2)
n,k

and c = 0.
Subcase (3.2). c ≥ 1.
In this subcase, we have a ≥ b ≥ c ≥ 1. In Bn,k(a, b, c), by the symmetry, without loss of generality, we

assume xu1 ≥ xu3 . We remove the c pendent edges incident with u3 from u3 to u1 and getBn,k(a+c, b, 0), where
a + c ≥ 2 and b ≥ 1. By Lemma 2.6, we have ρα

(
Bn,k(a + c, b, 0)

)
> ρα

(
Bn,k(a, b, c)

)
. Furthermore, it follows

from Lemma 4.3 and Corollary 5.4 that ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
B

(2)
n,k

)
≥ ρα

(
Bn,k(a+ c, b, 0)

)
> ρα

(
Bn,k(a, b, c)

)
.

Case (4). H = Cn,k(a, b, c) andH , Cn,k.
In Cn,k(a, b, c), we assume b ≥ c. SinceH , Cn,k, we have b ≥ 1.
In Cn,k(a, b, c), if xu2 ≥ xu3 , by removing all the edges incident with u3 (except for e3) from u3 to u2, we get

An,k(a + 1, b + c), where a ≥ 0 and b + c ≥ 1. By Lemma 2.6, we have ρα
(
An,k(a + 1, b + c)

)
> ρα

(
Cn,k(a, b, c)

)
.

Similarly, if xu2 < xu3 , we also get ρα
(
An,k(a + 1, b + c)

)
> ρα

(
Cn,k(a, b, c)

)
. Since a + 1, b + c ≥ 1, by Corollary

5.2, we have ρα
(
A

(2)
n,k

)
≥ ρα

(
An,k(a + 1, b + c)

)
. By Lemma 4.3, we obtain ρα

(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
. Thus, we get

ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
Cn,k(a, b, c)

)
.

Case (5). H = Dn,k(a, b, c).
In Dn,k(a, b, c), if xu1 ≥ xu2 , by removing e2 from u2 to u1, we obtain Cn,k(a, b, c). By Lemma 2.6, we

get ρα
(
Cn,k(a, b, c)

)
> ρα

(
Dn,k(a, b, c)

)
. Similarly, if xu1 < xu2 , by removing e1 from u1 to u2, we obtain

ρα
(
Cn,k(b, a, c)

)
> ρα

(
Dn,k(a, b, c)

)
. If Cn,k(a, b, c) = Cn,k or Cn,k(b, a, c) = Cn,k, then by Lemma 4.2, we have

ρα
(
B

(1)
n,k

)
> ρα

(
Cn,k

)
. Thus, we get ρα

(
B

(1)
n,k

)
> ρα

(
Cn,k

)
> ρα

(
Dn,k(a, b, c)

)
. If Cn,k(a, b, c),Cn,k(b, a, c) , Cn,k, then

by the proofs of Case (4), we obtain ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
> ρα

(
Dn,k(a, b, c)

)
.

Case (6). H = Fn,k(a, b, c) andH , Fn,k.
In this case, sinceH = Fn,k(a, b, c) andH , Fn,k, we have b ≥ 1 or c ≥ 1. Two subcases are considered as

follows.
Subcase (6.1). b ≥ 1.
In Fn,k(a, b, c), if xu1 ≥ xu2 , we remove all the b pendent edges incident with u2 from u2 to u1 and get

Fn,k(a + b, 0, c), where a + b ≥ 1 and c ≥ 0. By Lemma 2.6, we have ρα
(
Fn,k(a + b, 0, c)

)
> ρα

(
Fn,k(a, b, c)

)
. In

Fn,k(a, b, c), if xu1 < xu2 , we remove all the edges incident with u1 (except for e1 and e2) from u1 to u2 and obtain
Fn,k(a+b, 0, c), where a+b ≥ 1 and c ≥ 0. It follows from Lemma 2.6 that ρα

(
Fn,k(a+b, 0, c)

)
> ρα

(
Fn,k(a, b, c)

)
.

If c = 0, then Fn,k(a + b, 0, c) = Fn,k. By Lemma 4.2, we get ρα
(
B

(1)
n,k

)
> ρα

(
Fn,k

)
. Thus, we have

ρα
(
B

(1)
n,k

)
> ρα

(
Fn,k

)
> ρα

(
Fn,k(a, b, c)

)
. Namely, Lemma 5.5 holds whenH = Fn,k(a, b, c) with b ≥ 1 and c = 0.

Let c ≥ 1. In Fn,k(a + b, 0, c), if xu1 ≥ xu3 , we remove all the c pendent edges incident with u3 from u3

to u1 and get Fn,k. By Lemma 2.6, we get ρα
(
Fn,k

)
> ρα

(
Fn,k(a + b, 0, c)

)
. In Fn,k(a + b, 0, c), if xu1 < xu3 ,

we remove all the edges incident with u1 (except for e1 and e3) from u1 to u3 and obtain Fn,k. By Lemma
2.6, we have ρα

(
Fn,k

)
> ρα

(
Fn,k(a + b, 0, c)

)
. By Lemma 4.2, we get ρα

(
B

(1)
n,k

)
> ρα

(
Fn,k

)
. Thus, we have

ρα
(
B

(1)
n,k

)
> ρα

(
Fn,k

)
> ρα

(
Fn,k(a + b, 0, c)

)
> ρα

(
Fn,k(a, b, c)

)
with b ≥ 1 and c ≥ 1. Namely, Lemma 5.5 holds

whenH = Fn,k(a, b, c) with b, c ≥ 1.
Subcase (6.2). b = 0.
In this subcase, we have c ≥ 1. By the methods similar to those for the proofs of Subcase (6.1), we get

ρα
(
B

(1)
n,k

)
> ρα

(
Fn,k

)
> ρα

(
Fn,k(a, b, c)

)
with b = 0 and c ≥ 1.
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By combining the proofs of Cases (1)–(6), we get Lemma 5.5. □

Lemma 5.6. LetH ∈ Bi(n, k), where i ≥ 4, k ≥ 4 and m = n+1
k−1 ≥ 5. Suppose that all the IVs ofH are incident with

one edge f in E(H). Then, inH , there exist two IVs, denoted by uk1 and uk2 (1 ≤ k1 < k2 ≤ i), except for f , such that
there does not exist another edge satisfying that uk1 and uk2 are incident with this edge simultaneously.

Proof. We suppose that Lemma 5.6 do not hold. Namely, for any two IVs ui1 and ui2 in H , there exists
another edge (denoted by e∗, e∗ , f ) such that ui1 ,ui2 ∈ e∗, where 1 ≤ i1 < i2 ≤ i. Since i ≥ 4, H contains a
3-cyclic hypergraph as its subhypergraph. By Lemma 2.7, the number of cyclomatics ofH is not less than
3. This contradicts the fact thatH is a 2-cyclic hypergraph. □

Lemma 5.7. Let H ∈ B4(n, k), where k ≥ 4 and m = n+1
k−1 ≥ 20. We have max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} >

ρα(H).

Proof. Two cases are considered as follows.
Case (1). H has exactly two non-pendent edges (denoted by e1 and e2).
Since H is a bicyclic hypergraph, we have |e1

⋂
e2| = 3. Let e1

⋂
e2 = {u1,u2,u3}. Since H ∈ B4(n, k), H

has four IVs. Thus, inH , there exists another IV (denoted by u4) such that u4 is incident with e1 or e2, say
e1. Obviously,H is a hypergraph obtained fromBn,k(a, b, c) by attaching d pendent edges at u4, where d ≥ 1.
Without loss of generality, we suppose a ≥ b ≥ c.

If a = 0, then b = c = 0. Namely,H = B(3)
n,k. By Lemma 4.3, we obtain ρα

(
A

(2)
n,k

)
> ρα

(
B

(3)
n,k

)
.

Next, let a ≥ 1. InH , if xu2 ≥ xu4 , then by removing all the d pendent edges incident with u4 from u4 to u2,
we obtain Bn,k(a, b + d, c), where b + d ≥ 1 and c ≥ 0. By Lemma 2.6, we have ρα

(
Bn,k(a, b + d, c)

)
> ρα(H). In

H , if xu2 < xu4 , by removing all the edges incident with u2 (except for e1) from u2 to u4, we getBn,k(a, b+d, c),
where b + d ≥ 1 and c ≥ 0. By Lemma 2.6, we also have ρα

(
Bn,k(a, b + d, c)

)
> ρα(H). Since a, b + d ≥ 1, by

Corollary 5.4, we have ρα
(
B

(2)
n,k

)
≥ ρα

(
Bn,k(a, b + d, c)

)
. By Lemma 4.3, we get ρα

(
A

(2)
n,k

)
> ρα

(
B

(2)
n,k

)
. Thus, we

obtain ρα
(
A

(2)
n,k

)
> ρα

(
B

(2)
n,k

)
≥ ρα

(
Bn,k(a, b + d, c)

)
> ρα(H).

Case (2). H has at least three non-pendent edges.
Subcase (2.1). All the IVs ofH are incident with one edge (denoted by f ).
By Lemma 5.6, inH , there exist two IVs (denoted by v1 and v2) such that there does not exist an edge in

E(H)\ f satisfying that v1 and v2 are incident with this edge simultaneously. Suppose xv1 ≥ xv2 . By moving all
the edges incident with v2 (except for f ) from v2 to v1, we obtain a hypergraph (denoted byH ′). Obviously,
H
′
∈ B3(n, k). By Lemma 2.6, we get ρα(H ′) > ρα(H). It is noted that V(H) = V(H ′), dH ′ (v2) = 1 < dH (v2),

dH ′ (v1) > dH (v1), and dH ′ (u) = dH (u) for u ∈ V(H ′) \ {v1, v2}. In H ′, since f has three IVs and f is a non-
pendent edge,H ′ andH have the same number of non-pendent edges. Namely,H ′ has at least three non-
pendent edges. Obviously,H ′ , B(1)

n,k since B(1)
n,k has only two non-pendent edges. By Lemma 5.5, we have

max{ρα
(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} ≥ ρα(H ′). Thus, we get max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} ≥ ρα(H ′) > ρα(H).

Subcase (2.2). InH , there does not exist an edge such that it is incident with all the IVs ofH .
In this case, in H , there exist two IVs, denoted by u1 and u2, such that they are not incident with a

common edge. Otherwise, in H , if any two IVs are incident with a common edge, then H contains a
3-cyclic hypergraph as its subhypergraph. This is a contradiction. Let P = u1e1 · · · esu2 be the shortest
path connecting u1 and u2, where s ≥ 2. In H , if xu2 ≥ xu1 , let H◦ be the k-uniform hypergraph obtained
from H by removing all the edges incident with u1 (except for e1) from u1 to u2. Since dH◦ (u1) = 1, we
have H◦ ∈ B3(n, k). By Lemma 2.6, we have ρα(H◦) > ρα(H). In H , if xu2 < xu1 , let H∆ be the k-uniform
hypergraph obtained from H by removing all the edges incident with u2 (except for es) from u2 to u1.
Since dH∆ (u2) = 1, we have H∆ ∈ B3(n, k). By Lemma 2.6, we have ρα(H∆) > ρα(H). Next, we prove H◦,
H
∆ , B(1)

n,k.
In H , if at least one of u1 and u2 is incident with pendent edges, then by the definition of H◦, there

exists a pendent edge incident with u2 inH◦. Thus, inH◦, the shortest path connecting u1 and an arbitrary
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pendent vertex incident with a pendent edge attached at u2 is at least of length 3. This implies thatH◦ , B(1)
n,k

since the diameter of B(1)
n,k is 2. Similarly, we haveH∆ , B(1)

n,k.
Next, In H , we suppose that both of u1 and u2 are not incident with pendent edges. Since u1 and u2

are two IVs, u1 is incident with a non-pendent edge (denoted by f1, f1 , e1) and u2 is incident with a
non-pendent edge (denoted by f2, f1 , e2). By the definition of H◦, in H◦, there are three non-pendent
edges, namely ( f1 \ {u1})∪{u2}, f2 and es. Thus, we getH◦ , B(1)

n,k sinceB(1)
n,k has only two non-pendent edges.

Similarly, we haveH∆ , B(1)
n,k.

By the above proofs, we have H◦,H∆ ∈ B3(n, k) and H◦,H∆ , B(1)
n,k. Thus, by Lemma 5.5, we have

max{ρα
(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} ≥ max{ρα(H◦), ρα(H∆)}. Therefore, we have max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} >

ρα(H). □

Lemma 5.8. LetH ∈ Bi(n, k), where i ≥ 4, k ≥ 4 and m = n+1
k−1 ≥ 20. We have max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} >

ρα(H).

Proof. Let U = {u1,u2, · · · ,ui} be the set of all the IVs ofH , where i ≥ 4. We prove Claim (1) firstly.
Claim (1): For H ∈ Bi(n, k) with i ≥ 4 and k ≥ 4, there exists a hypergraph H ▷ ∈ Bi−1(n, k) such that

ρα(H ▷) > ρα(H), where 0 ≤ α < 1.
To obtain Claim (1), two cases are considered as follows.
Case (1). InH , there exists an edge (denoted by f ) such that U ⊆ f .
By Lemma 5.6, in H , there exist two IVs, denoted by uk1 and uk2 (1 ≤ k1 < k2 ≤ i), except for f , such

that there does not exist another edge satisfying that uk1 and uk2 are incident with this edge simultaneously.
Without loss of generality, we suppose xuk1

≥ xuk2
. LetH ▷ be the hypergraph obtained fromH by removing

all the edges incident with uk2 (except for f ) from uk2 to uk1 . Obviously,H ▷ ∈ Bi−1(n, k). By Lemma 2.6, we
get ρα(H ▷) > ρα(H).

Case (2). InH , there does not exist an edge such that all the vertices in U are incident with it.
In this case, in H , we claim that there exist two vertices uk1 and uk2 (1 ≤ k1 < k2 ≤ i) in U in such a

way that there does not exist an edge satisfying that uk1 and uk2 are incident with this edge simultaneously.
Otherwise, we suppose that, in U, for any two vertices ui1 and ui2 (1 ≤ i1 < i2 ≤ i), there exists an edge
(denoted by e) satisfying that ui1 ,ui2 ∈ e, where e ∈ E(H). Since i ≥ 4, H contains a 3-cyclic hypergraph as
its subhypergraph. SinceH ∈ Bi(n, k), where k ≥ 4 and i ≥ 4, by Lemma 2.7, the number of cyclomatics of
H is not less than 3. This contradicts the fact thatH is a 2-cyclic hypergraph. SinceH is connected, there
exists one shortest path connecting uk1 and uk2 . We denote this path by v1e1v2 . . . ehvh+1, where h ≥ 2, v1 = uk1

and vh+1 = uk2 . Without loss of generality, we suppose xuk1
≥ xuk2

. LetH⋆ be the hypergraph obtained from
H by removing all the edges incident with uk2 (except for eh) from uk2 to uk1 . Obviously,H⋆ ∈ Bi−1(n, k). By
Lemma 2.6, we get ρα(H⋆) > ρα(H).

By the proofs of Cases (1) and (2), we obtain Claim (1).
IfH ∈ B4(n, k), by Lemma 5.7, we get Lemma 5.8. IfH ∈ Bi(n, k) with i ≥ 5, by Claim (1), there exists a

hypergraph H ▷ ∈ B4(n, k) such that ρα(H ▷) > ρα(H). Furthermore, by Lemma 5.7, we obtain Lemma 5.8.
Thus, Lemma 5.8 holds. □

In Theorem 5.9, we get the hypergraphs with the first and the second largest α-spectral radii among
B(n, k).

Theorem 5.9. LetH ∈ B(n, k)\{A(1)
n,k,B

(1)
n,k}, where k ≥ 4 and m = n+1

k−1 ≥ 20.

(i). ρα
(
A

(1)
n,k

)
= ρα

(
B

(1)
n,k

)
> ρα(H) for α = 0.

(ii). ρα
(
A

(1)
n,k

)
> ρα

(
B

(1)
n,k

)
> ρα(H) for 0 < α < 1.

Proof. Let 0 ≤ α < 1, k ≥ 4 and m = n+1
k−1 ≥ 20.

By Lemma 4.2, we have ρα
(
A

(1)
n,k

)
≥ ρα

(
B

(1)
n,k

)
with the equality if and only if α = 0.
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If H ∈ B2(n, k), then H = An,k(a, b). By Lemma 4.3 and Corollary 5.2, we get ρα
(
B

(1)
n,k

)
> ρα

(
A

(2)
n,k

)
≥

ρα
(
An,k(a, b)

)
with the equality if and only if a ≥ b ≥ 1 and a+ b = m− 3. IfH ∈ B3(n, k), thenH is one of the

hypergraphs as shown in (20). By Lemma 5.5, we have ρα
(
B

(1)
n,k

)
> max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} > ρα(H),

where H ∈ B3(n, k) \ {B(1)
n,k,Cn,k,Fn,k}. If H ∈ Bi(n, k) with i ≥ 4, then by Lemmas 5.5 and 5.8, we obtain

ρα
(
B

(1)
n,k

)
> max{ρα

(
A

(2)
n,k

)
, ρα

(
Cn,k

)
, ρα

(
Fn,k

)
} > ρα(H).

By combining the above proofs, we get Theorem 5.9(i) and (ii). □

Remark 5.10. Among B(n, k) with k = 3 and m = n+1
k−1 ≥ 20, by the methods similar to those for Theorem 5.9, we

obtain the conclusion that the hypergraph with the largest spectral radius isA(1)
n,k.

Remark 5.11. By the proofs of Theorem 5.9, we get that the hypergraph with the third largest spectral radius among
B(n, k) must be one among {A(2)

n,k,Cn,k,Fn,k}, where k ≥ 4 and m = n+1
k−1 ≥ 20. The task will be studied in the future.
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