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Batalin-Vilkovisky structures on the cohomologies of tensor Poisson
algebras

J. Luo?, S.-Q. Wang"~

*Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
bSchool of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Abstract. It has been proved that the Poisson cohomology ring of a Poisson algebra has a Batalin-
Vilkovisky algebra structure iff the Poisson algebra is pseudo-unimodular. In this paper, it is proved that
the tensor algebra of two pseudo-unimodular Poisson algebras is also pseudo-unimodular, thus its Poisson
cohomology ring is still a Batalin-Vilkovisky algebra. Furthermore, This Batalin-Vilkovisky algebra is

isomorphic to the tensor Batalin-Vilkovisky algebra of the respective Poisson cohomology rings of the two
pseudo-unimodular Poisson algebras.

1. Introduction

Poisson algebras and their (co)homology theory play an important role in the study of their deformation
quantization algebras, since Poisson algebras and their deformation quantization algebras often share many
similar homological properties. For example, Dolgushev proved that the Van den Bergh duality holds for
the deformation quantizations of unimodular Poisson algebras [8]. And the Hochschild homology of
some Calabi-Yau algebras have been calculated while they are viewed as deformations of unimodular
polynomial Poisson algebras [4] 24, 26| 27, [29]. The cohomologies and deformations of tensor Poisson
algebras are investigated in [7].

Unimodular Poisson structures attract much attention since they have nice properties, such as Poincaré
duality and the Batalin-Vilkovisky (BV for short) structures on their Poisson cohomologies [5,33]. In fact,
for any smooth Poisson algebra with trivial canonical bundle or Frobenius Poisson algebra, twisted Poincaré
duality always holds by twisting the Poisson module structure in a canonical way, which is constructed
from the modular derivation[12}[15}[19] 22} 34].

On the other hand, Gerstenhaber structures and BV structures on cohomologies have been widely
studied since they appear in the research of BV formalism and play an important role in quantum field
theory and string theory [25]. The BV structures on the Hochschild (co)homology of noncommutative
algebras have been considered by many researchers, such as [10,(13}14,28]. In [17], Le and Zhou considered
the tensor product of two Gerstenhaber algebras, which is still a Gerstenhaber algebras, and proved that as
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Gerstenhaber algebras, the Hochschild cohomology ring of the tensor product of two algebras is isomorphic
to the tensor product of the respective Hochschild cohomology rings of these two algebras when at least
one of which is finite dimensional. Zhu generalized this to the Poisson framework. He proved that the
Poisson cohomology ring of the tensor product of two Poisson algebras is isomorphic to the tensor product
of the respective Poisson cohomology rings of these two Poisson algebras as Gerstenhaber algebras [35]].
Since BV algebras are special Gerstenhaber algebras whose Gerstenhaber brackets can be defined by BV
operators, we consider the BV structures on the Poisson cohomology of the tensor Poisson algebra in this
paper, while the unimodular polynomial Poisson algebras case has been investigated in [6].

As a generalization of unimodular Poisson structures, a notion of pseudo-unimodular Poisson structure
is defined for smooth algebras with trivial canonical bundles [21]] and Frobenius algebras [20]. It is proved
that the Poisson cohomology ring of a Poisson algebra can be endowed with a BV algebra structure inherited
from some one of its Poisson cochain complex if and only if the Poisson algebra is pseudo-unimodular.
The mail result in this paper is that the tensor algebra of two pseudo-unimodular Poisson algebras is also
pseudo-unimodular and its Poisson cohomology ring is isomorphic to the tensor product of the respective
Poisson cohomology rings of these two Poisson algebras as BV algebras.

This paper is organized as follows. In Section 1, we recall some preliminary definitions and results
mainly on Poisson algebras and cohomology rings, pseudo-unimodular Poisson structures, Gerstenhaber
algebras and BV algebras, etc. In Section 2, we prove that the tensor algebra of two pseudo-unimodular
Poisson algebras is still pseudo-unimodular. Then we study the BV structure on the Poisson cohomology
of the tensor algebra of two pseudo-unimodular smooth Poisson algebras with trivial canonical bundles,
and prove that it is isomorphic to the tensor BV algebra of the respective Poisson cohomology rings. In
Section 3, we also consider the BV algebra isomorphism for Frobenius Poisson algebras.

2. Preliminaries

In this section, we collect some necessary materials on Poisson algebras, Poisson cohomology, Gersten-
haber algebras and Batalin-Vilkovisky algebras. Let k be a field. All vector spaces and algebras are over k.
We refer to [16] as the basic reference.

2.1. Poisson algebras and Poisson cohomology

Definition 2.1. [18,132]] A commutative k-algebra R equipped with a bilinear map m = {—, =} : RX R — Ris called
a Poisson algebra, denoted by (R, i), if

1. the underline k-vector space R together with {—, =} : R X R — R is a k-Lie algebra;
2. {—=, =} : RX R — Ris a derivation in each argument with respect to the multiplication of R.

For any p € N, let XP(R) be the set of all skew-symmetric k-linear maps from R*” to R which are
derivations in each argument, that is,

XP(R) = {F € Homg(APR, R) | Fis a derivation in each argument}.
Obviously, X!(R) = Dery(R) is the set of k-linear derivations of R. Let Q!(R) be the canonical module of
Kahler differentials with d : R — Q'(R) the classical de Rham differential, and Q?(R) = /\ﬁQl(R) be its p-th
wedge product. Then for any p € N,
X¥P(R) = Homg(QP(R), R). (2.1)
Set X*(R) = @pen¥¥(R) and Q*(R) = @pen(?’(R). There is a canonical cochain complex

0—R-IL ¥R S ... wER D ¥R — - 2.2)
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where & : X¥P(R) — XP*1(R) is defined as F + 6”(F) with

p+1
OF(F)ar A+ ANapyr) = Z(—l)’{F(‘ll Al N per), ai) + Z (=D"F{ai,ap} Aag A---ai--- a5+ N dpy),
i=1

1<i<j<p+1
where 1; means that the corresponding entry a; is omitted.

Definition 2.2. [11}[18] The complex is called the Poisson cochain complex of R, and its p-th cohomology is
called the p-th Poisson cohomology of R, denoted by HPP(R).

2.2. Pseudo-unimodular Poisson algebras

We first recall the definitions of contraction maps for any commutative algebra and the modular deriva-
tion for a smooth Poisson algebra with trivial canonical bundle.

Definition 2.3. For any w € (OP(R), the contraction map 1, is a graded R-linear map of degree —p on the complex
Homg(€Q*(R), R), which is defined as 1, : Homp(Q7(R), R) — Homgp(Q77(R),R): when q <p,1, =0; whenq > p
and F € Homg(Q7(R), R),

(toF)(day Adag A -+~ Adayp) = F(day Aday A--+ Adagp A w).
By @2.1), this induces an operation 1, on X¥*(R).

Definition 2.4. For any F € X7(R), the contraction map tr : QQ*(R) — Q*(R) is a graded R-linear map of degree —p,
which is defined as 1 : QQ1(R) — QTP(R): when q <p,1r = 0, whenq > pand w = agda; Aday A--- Ada,; € QI(R),

tr(w) = Z sgn(0)aoF(as1y A gy A -+ A dog)) dagpey A - A daggg),

0€Sp4-p

where Sy, denotes the set of all (p,q — p)-shuffles, which are the permutations o € S, such that 6(1) < --- < o(p)
ando(p+1) <--- < o(q).

Definition 2.5. Let R be a smooth Poisson algebra of dimension n with trivial canonical bundle (J"(R) = Rvol
where vol is a volume form. The modular derivation of R with respect to vol is defined as the map ¢yo1 : R = R
such that for any a € R,

(onl(a) = gHﬂ (VOD

7

vol

where H, = {a, -} : R = R is the Hamiltonian derivation associated to a and £y, = [d, ty,] is the Lie derivation.

When the volume form is changed, the corresponding modular derivation is modified by a so called
log-Hamiltonian derivation (see [8]). The modular class of R is defined as the class ¢y, modulo log-Hamiltonian
derivations. If the modular class is trivial, i.e., ¢yo1 is a log-Hamiltonian derivation, then R is said to be
unimodular.

Definition 2.6. [21]] A Poisson algebra (R, ) is said to be pseudo-unimodular if there exists a de Rham 1-cocycle
@ € QY(R) such that 1, is the modular derivation of R.

Remark 2.7. In this paper, we consider the pseudo-unimodular Poisson structures which are more general than the
unimodular ones and share similar homological properties.
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2.3. Gerstenhaber algebras and Batalin-Vilkovisky algebras
LetG = @iez G; be a graded vector space, and G(1) be the shift of G such that G(1); = Gj1.

Definition 2.8. [9] A Gerstenhaber algebra (G, -, [—,~]) is a graded-commutative algebra (G = P
endowed with a bracket of degree O

iez Gir*)

[==1: G(1) x G(1) = G(1),
such that G(1) is a graded Lie algebra, and for any homogeneous element a € G(1), the map [a, —] is a graded-derivation,
i.e., for any homogeneous elements b, c € G,

[a,b-c] = [a,b]-c+ (=1)¥DWp.[g,c].

Example 2.9. For any commutative algebra R, (¥*(R), A, [—, —]sn) is a Gerstenhaber algebra (see [16]), where
[, —Isn : XP(R) X X1(R) — XP*1-1(R) is the Schouten-Nijenhuis bracket : for any P € XP(R) and Q € X(R),

[P, Qlsn(@1 Az A+ Adpig_g) =(-1)FDED Z sgn(0)P(Qasy A =+ Adg(g) A loger) A+ A lo(peg-1))

(TESqlpq

- Z sgn(0)Q(P(asay A~ -+ A aa(p)) AN bgpe1y A= A ao(p+q—1))-

UESWI_l

Example 2.10. ([[16, Proposition 4.9]) For any Poisson algebra R, its Poisson cohomology (HP*(R), A, [—, —]sN) is
also a Gerstenhaber algebra.

Definition 2.11. ([[17] Proposition-Definition 2.2]) Let (A®, Aa,[—, —]a) and (B®, Ap, [—, —1g) be two Gerstenhaber
algebras. Then there is a new Gerstenhaber algebra (L*, A, [—, —]) given as follows:

1. L"=6p, +jen A ® Bl as a k-vector space for n € Z;

2. @@b)A (@)= (-1)"Ml@ar,a)® (b Agl);

3. [a®b,a @] = (-1)"Dl[g, a1, @ (b Ag V') + (=)D (g Ay ') @ [, 115,
wherea,a’ € A® and b, b’ € B® are homogeneous elements. We call (L*, A, [—, —]) the tensor Gerstenhaber algebra
of A® and B®, and denote it by A* ® B®.
Example 2.12. Let R and S be two Poisson algebras, then HP*(R) ® HP*(S) is a tensor Gerstenhaber algebra.

Definition 2.13. [TH3] Let (V, ) be a graded-commutative graded algebra. A Batalin-Vilkovisky operator A on V is
an operator A : V — V of degree —1 such that A> = 0 and

[2,b] == (-1)"/(A(a - b) - A(a) - b - (=1)la - A(D)) (2.3)
is a graded-derivation in the sense that for any homogeneous elements a,b,c € V,
[a,b-c] =[a,b]-c+ (=1)W-DMp.[g,c].

In other words, the obstruction of A from being a graded-derivation is a graded-derivation. The triple (V, -, A) is called
a Batalin-Vilkovisky algebra (BV algebra, for short).

Remark 2.14. Batalin-Vilkovisky algebras are special examples of Gerstenhaber algebras if one define the Lie bracket
by (2.3). A Gerstenhaber algebra with the bracket [—, —]is a BV algebra (or said to be exact) if it can be equipped with
an operator A of degree —1 such that A* = 0 and holds. In other words, [—, —] measures the deviation of A from
being a derivation.

Example 2.15. ([[16,121}133l) For any smooth algebra R with trivial canonical bundle, the triple (X*(R), A, A) isa BV
algebra, where the BV operator A can be described by using the dual basis of the Kihler differential module. When R
is a unimodular smooth Poisson algebra, its Poisson cohomology HP*(R) admits a BV algebra structure induced from
the one on X*(R).
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Let us recall the tensor product of two BV algebras defined in [23} Proposition in Section 5.8.1].
Proposition-Definition 2.16. [23, Proposition in Section 5.8.1] Let (A®, Aa, Aa) and (B®, Ap, Ag) be two BV
algebras. Then there is a new BV algebra (L*, A, Ag) given as follows:

L L"=(P,, ., A’ ®B/ as a k-vector space forn € Z;

2. @@b)A@®b) = (D"l r,a)® (b Agb);
3. Ap(@a®b) = Ay(a) ® b + (—1)a ® Ap(b),

where a,a’ € A® and b, b’ € B* are homogeneous elements. We call (L*, A, Ag) the tensor BV algebra of A® and B®,
and denote it by A® ® B°.

Remark 2.17. In the above definition, (L*, A, [—, —=]) is the tensor Gerstenhaber algebra of the two Gerstenhaber alge-
bras (A®, Aa, [—,—1a) and (B®*, Ag, [—, 1), where [—, =], [—, =]a and [—, —]p are defined by with corresponding
A, Aa, Ag and Ag, Aa, Ag.

Example 2.18. Let R and S be two unimodular Poisson algebras. There is a tensor BV algebra HP*(R) ® HP*(S).

3. The cohomology of tensor Poisson algebras

In this section, we focus on the tensor products of Poisson algebras and their cohomologies. Throughout
this section, all the Poisson algebras involved are smooth affine algebras with trivial canonical bundle.

3.1. Tensor Poisson algebras

Let (R, {—,—}r) and (S, {—, —}s) be Poisson algebras. Then the tenor product R ® S admits a Poisson
structure {—, —} given by

ros, 7 ®@s'} ={rrg®ss’ +r ®{s,s'}s,¥r,©’ €R,s,s’ €8S.

The Poisson algebra (R ® S, {—, —}) is called the tensor Poisson algebra of R and S.

Suppose that R and S are smooth Poisson algebras with trivial canonical bundles. Then the tensor
Poisson algebra R ® S is still a smooth algebra with trivial canonical bundle, and the modular derivation ¢
of R® S is closely related to the modular derivations of R and S:

P(r®s) =pr(r) ®s+r®Ps(s), Vr®s € R®S, (3.1)
where ¢r and ¢g are the modular derivations of R and S, respectively. See [30, Theorem 4.2].

Remark 3.1. For the tensor algebra R ® S, its Kiihler differential module Q'(R® S) = (Q'(R) ® S) @ (R ® QL(S)),
and the classical de Rham differential d : R® S — QYR ® S) is given by d(r®s) =dr®s+r®ds.

Proposition 3.2. If R and S are pseudo-unimodular Poisson algebras, then so is the tensor Poisson algebra R® S.

Proof. By the definition of pseudo-unimodular Poisson algebras, there exist de Rham 1-cocycles @ € Q!(R)
and w € Q!(S) such that the modular derivations PR = IoTIR, Ps = Ly Tis.
Consider the 1-form @®1+1®w € Q}(R®S), it’s easy to check that it is a de Rham 1-cocycle in Q(R®S).
We claim that the modular derivation ¢ = ((og1+184)7, Which implies that R ® S is also pseudo-unimodular.
Foranyr®s € R®S§,

P(r®s) = Pr(r) ®s + 1 ® Ps(s)

LoTR(F) ® S + 1 ® 1,TT5(S)

=TR(A7 A@)®s+r®@ms(ds A w)
n(dr®s)Ao®1)+n(d(r®s) Al®w)

Loo1+10w) TU(T ® 5).
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Remark 3.3. For a smooth Poisson algebra R with trivial canonical bundle, its Poisson cohomology admits a BV
algebra structure induced from X*(R), if and only if R is pseudo-unimodular ([21}, Theorem 5.9 and Corollary 5.12]).

Corollary 3.4. If R and S are pseudo-unimodular Poisson algebras, then the Poisson cohomologies HP*(R), HP*(S)
and HP*(R ® S) are all BV algebras.

Corollary 3.5. For pseudo-unimodular Poisson algebras R and S, their Poisson cohomology rings carry a BV algebra
structure and induce the structure of a BV algebra HP*(R) ® HP*(S) as the tensor product of two BV algebras (See
2.16).

Now we fix some notations to describe the BV operators. Let R be a smooth Poisson algebra of dimension

n, {(dx;), (dx;)*}]_, be a dual basis for QY(R), and n € Q"(R) be a volume form. Let U = {(I;, I, , 1) |

L, - ,Iyareintegersand 1 < Iy <l <--- < I, <r}. Forany I = (I3, I,--- ,I,) € U, to simplify the notations,
let dx; denote dx;, A dxj, A --- A dx;, and dx] denote (dxy,)* A (dxp,)* A -+ A (dxg,)". Let

ar = (dx})(n) and by = n*(dxy).

Then (X*(R), A, A) is a BV algebra with the BV operator A given by

APY @ Aay A+ Nayq) = (=1)F Z (dx)(P@y Ay A=+ Ay Axp)) + (-1) Z Py Aay A--- Aayq Aapby,
1<i<r IeUd

for each P € XP(R) (see [21], Theorem 4.15] for details).

Similarly, let S be a smooth Poisson algebra of dimension m, {(dy;), (dyi)’*}f,:1 be a dual basis for Q!(S), and
& € O"(S) be a volume form. Let V ={(J1, ]2, ,Jm) | J1,-++ ,Jm are integersand 1 < J; < J < -+ < [, < s}
Forany ] = (J1, J2,- -+, Jm) € V, letdy; denote dy;, Ady), A- --Ady;, and dy; denote (dy;,)" A(dyp,) A- --A(dy;,)"
Let

¢ =(dyp)(€) and dj=&(dy)).
Then the BV operator on X*(S) given by

AQ) by Aby A+ Abyq) = (=1 Z (dy)'(QUor A2 A+ Abpy A )+ (<17 Z P(by Aby A+ Abyy Acp)d),

1<I<s Jev

for each Q € X1(S).
In this setting, R® S is a smooth Poisson algebra of dimension 7 + m with {dx; ®1,1® dy;; (dx;)' ®1,1®
(dyj) h<i<r a dual basis for QR®S)and n® & € Q""(R® S) a volume form. Forany I € U, ] € V,
1<j<s

(dx;® dy})(n &) =a®c and (N®E)(dx®dy)) =b®d;.

Then the BV operator on X*(R ® S) is given by

AT 1 Aca A+ Acie) =(—1) Z ((dx) @ D(T(c1 Aca A+ Acyr A(dx; @ 1))

1<i<r

+ (=1 z (1@ (dy) )T Aca A+ A A (1@ dy)))

1<j<s

FED Y T A A Ag Alar @ c)(br@d)),
IeUjeV

foreach T € X/(R®S).
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3.2. BV structures on Poisson cohomology

For two Poisson algebras R and S, it is proved that there is an isomorphism of Gerstenhaber algebras
[35]
HP*(R) ® HP*(S) = HP'(R® S),

which is induced from X*(R) ® X¥*(S) = X*(R® S). The isomorphism
D: X (R)®X(S) > X(R®S)

is constructed as EBW @, 4, where @, : XP(R) ® X7(S) — XP*1(R® S) is defined by

Dpy(f®7g) (a1 ®b1) A(az ®b2) A+ A (apeg ® bpyy) =

Z SG(O)a(p+1) Ao f(Ao1) A+ A o) @ Doty -+ bop) g Popen) A -+ A bogprg),

€Sy,
for any f € ¥(R) and g € X9(S).
Theorem 3.6. Let R and S be unimodular Poisson algebras. There is an isomorphism of BV algebras
HP*(R) ® HP*(S) = HP*(R® S).

Proof. The left hand side of the above isomorphism is the tensor product of two BV algebras, while the right
hand side is the cohomology of the tensor Poisson algebra R ® S. In the unimodular Poisson algebras case,
the BV operators of Poisson cohomologies HP*(R), HP*(S) and HP*(R ® S) are induced by the BV operators
on X¥*(R), X*(S) and X*(R® S), respectively. Since ® : X¥*(R) ® X*(S) — X'(R® S) induces the isomorphism as
Gerstenhaber algebras ([35]), we only need to prove that @ preserves the BV operator:

X(R)® X*(S) =~ ¥(R®S)
As A
¥(R)® ¥(S) == X*'(R®S),
ie. AD(f ® g) = PAg(f ® g) for any f € XP(R)and g € X9(5).
By the definition of Ag, Ag(f ® 9) = Af ® g + (=1)V f ® Ag. Then
PAs(f ® ) = Dyt (Af ® ) + (<1 Dy 11 (f ® Ag).
Forany ay, -+ ,apq-1 € R,and by, -+ ,byiq-1 € S,

@Ag,(f ® g)((ﬂl Qb)) AN@Mmb)A--- A (Llpw,l ® bP*‘?*l))
= ), s8n(O)n() * Aofprg-nAf o) A+ A1) & Bty Bap1) 9 Botpy A -+ A Botpag-1)

0€Sp-14

+(=1y Z SgN(0)ao(p+1) *** Aoprg-1) f (Go(t) A -+ A lop) @ Do) - o) AG(Bo(pety A -+ A bopg-1)

0€Sp 41
=1y Z Z SB(0) () - Bo(prg1)(dx) (Flao) A -+ A doper) A X))
0€Sy_14 1<i<r
®bo1) -+ ba(p-1)9Bop) A -+ A bo(pag-1)
+(=1y Z Z sgn(0)as(p) * * * Ao(p+q-1) f (A1) A -+ + A dop-1) A a1)by
0€Sp-1,4 1

® bo(1) * bop-1)9(bop) A -+ A bopag-1))
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+ (=1 Z Z sgN(0)as(p+1) * * * Ao(pg-1) f (Ao(r) A =+ + A do(p))

0€Sp4-1 1<j<s

® bot) by (d Y1) (9boprn) A -+ A bapeg-1) A )
FED Y Y 5800 Map) - Boprg-0f o) A A )

0€Spq-1 ]

®bo(1) Do) g (bops1) A -+ A baipeg-1) A €],
which are denoted by B1, B2, B3 and B4, respectively. While

AD(f ® g)((a1 ®b1) A (a2 ®b2) A -+ A (aprg-1 ® bpig-1))
=(-1y*1 ) (dx) @ 1)(D(f @ 9)((@1 @ b1) A+ A (Geg1 @ byeg1) A (xi© 1))

1<i<r

+ (=17 Y (1 Ay )P @ 9@ @ b1) A+ A (@pegr @ byig1) A (1@ 1))
1<j<s

(1Y D(F @ ) (@1 @b1) A+ A (@yag @ byeg 1) A (1 @ €)(br © )
Ly

Denote the three parts of the sum by A1, A2 and A3, respectively. Then

Al =(_1)p+q Z ((dxi)* ® 1)( Z sgn(o)a(,(pﬂ) cee ag(pw)f(ag(l) JANKCERIVAN Ag(p-1) A xi))

0€Sy,
o(p)=p+q

® bo(1) ** * bop-1) 1+ gbopr1) A -+ A bo(prg)
:(_1)p+q Z ((dxi)’E ® 1)( Z (_1)11 Sgn(G)ao(p) tee ua(p+q—1)f(aa(1) ARRRIVAN aa(p—l) A xi))

0€S)-14

1<i<r

1<i<r
®bs(1) ** * bo(p-1)9(lo(p) A -+ A bo(prg-1))
:(_1)p Z Z Sgn(a)(dxi)*(ag(p) T ao(p+q—1)f(aa(1) ARRRIA As(p-1) A X,‘))
0€Spy-1,4 1<i<r
® bo1)* * bop-1)9Ba(p) A -+ A Dg(pg-1)
=(-1y Z Z S8N(0)a(p) - - Aa(prg-1)(AX) (F(@or) A A gpor) A Xy))
0€Sy-14 1<i<r
® bo(1) -+ bop-19Ba(p) A -+ A Dg(pg-1)
+ (_1)19 Z Z Sgn(‘j)(dxl‘)*<av(p) T aa(p+q—1))f(aa(1) ARRRA As(p-1) A xi)
€5, 1<i<r

® bo(1y -+ bop-1)9(bop) A -+ A bo(prg-1))-

Note that the first part is exactly B1. Denote the second part by Al1, and

ALl =1y Z sgn(0)f(@o) A+ Adop-1) A o) *** Bo(peg-1)
0€Sy-14

® bo(1) *+~ bagp-1)9(bop) A+ A Dotprg-1)
=1 Y, Y, B0 f@s A Aagen AGoty)ast) ol Aa(peg-1

0€Sy-1, p<k<p+q-1
® bo(1y -+ - bop-1)9 (o) A -+ A bo(pag-1))-
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Similarly, one can check that A2 = A22 + B3, where

A22 =(-1)'*1 Z SgN(0)a(p+1) ** Ao(prrq-1) f (Ao) A+ A o)

0€Sp4-1
® 9(Dops1) A+ A bagrg-1) A boy -+~ bogp))
=T YN B0 Aoy f o A A dogy)

U’Esp,qq 1Sl§p
® 9(bopr1) A -+ A Bogrg1) A by )bott) - Doy bagy)-

Considering the 1-1 correspondence between {(0,k)lo € Sy-14,p <k <p+qg—1}and {(¢',))|o” € Sy 4-1,1 <
I < p}, we can get A11 + A22 = 0. Thus A1 + A2 = B1 + B3.

A3 =(=1)F* Z O(f @ 7) (a1 ®b1) A+ A (@prg-1 ® bpig-1) A (a1 ® ¢7))(br ® d)
L]

=(-1y" Z ( Z SEN(0)o(p+1) - Ao(pa).f (o) A -+ A g(p-1) A d1)
L] 0€5,4
a(p)=p+q

® bty botp-1C19(botpeny A+ A b)) (br @ ly)
+ (=1)yp Z( Z sgN(0)ag(p+1) -+ Aopeg-1)aLf Aoy A -+ A Ag(p))
]

4 ESW]
o(p+q)=p+q

® bo(1) "+ Do) 9 (Oo(p+1) A - A Dopag-1) A CJ))(bI ®dj)
=(-1f Z Z sgn(0)do(p) - * * Aa(p+q-1) f (@) A - -+ A dg@p-1) A ar)by
L] 0€Sp14

® b1+ bop-1)c19bop) A -+ A Do(prg-1))d)
FEDTY N sgn(0apn - Boprg-1if(@sm A+ A o)

L] 0€Sp1

® bo(1) ** * bor) g (Dop+1) A -+ A bo(pag-1) A €p)d)

Note that ) ;a;b; =1, Z] cid; =1. So

A3 =(-1y Z Z sgN(0)as(p) * * * Ao(p+q-1) f (A1) A -+ * A dop-1) A a1)by

I GES,FU’
® bo(t) * + bop-1)9op) A+ A bopg-1))
FEDTY Y 5800 Mae) o0 f o) A Adag)
] 0€Sp41

® bo(t) ** * bop)g(bap+1) A -+ A bo(pag-1) A €p)dj
=B2 + B4.

Hence Al + A2 + A3 = B1 + B2 + B3 + B4. The proof is finished.

3.3. Pseudo-unimodular Poisson algebras case

Recall that if (R, ) is a pseudo-unimodular Poisson algebra, i.e., there exists a de Rham 1-cocycle
@ € QYR) such that its modular derivation ¢y = 1,7, then (HP*(R), A, A;) is also a BV algebra induced
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from (X*(R), A, A;), where
Ar=A-N, N(P) = (-1)1,P (3.2)

(see [21, Theorem 5.9 and Remark 5.10]). Now consider the tensor Poisson algebra of two pseudo-
unimodular Poisson algebras, and we have the following theorem.

Theorem 3.7. Let R and S be pseudo-unimodular Poisson algebras. There is an isomorphism of BV algebras
HP*(R) ® HP*(S) = HP*(R® S).

Proof. Again using the fact that ® : ¥*(R) ® X*(S) —» X*(R® S) induce the isomorphism as Gerstenhaber
algebras ([35]), we should prove that the isomorphism @ preserves the twisted BV operator, that is,

A D(f ® g) = PAe(f ® ) = Dp-14(Arf ® 9) + (1) Dpg-1(f ® Arg)

for any f € ¥”(R) and g € X1(S).

Note that the BV operators in pseudo-unimodular Poisson algebras case are twisted as in (3.2). Suppose
@ € QYR) and w € Q!(S) are de Rham 1-cocycles such that the modular derivations ¢r = (TR, Ps = 1uTs.
Then

Af = Af = (1) 1o f, Arg = Ag — (=1)1,,9.
From the proof of Proposition 3.2}

AD(f @ g) = (A = (1) og1+180)(P(f ® 7).

In Theorem we have proved that the isomorphism @ preserves the operator A. Thus we only need
to prove that

(_1)p+qlm®l+l®w(¢’(f ® 9)) = (_1)pq)p—1,q(twf ® 9) + (_1)p+qq)p,q71(f ® ng)/
i.e.
Los1 (P(f ® 7)) + tew(P(f ® 7)) = (=1)1Dp_14(taf ® ) + Pp4-1(f ® L)
In fact, 1oe1 (P(f ® g)) is the map sending (a1 ® b)) A (a2 ® ba) A - -+ A (ap1g-1 ® bpig-1) to
O(f @ 7) (a1 ®b1) A (@2 ®b2) A+ A (Apsg-1 ® bpig-1) A (@ ® 1))

= Z SgN(0)ag(p+1) "+ Ao(pra) f (o)) A -+ Alg(p-1) A @) ® bty Dop-1) * 1+ g(Oo(pr1) A+ A bo(psg))

0€Sp,
a(p)=p+q
= ), D780+ Aotprg-1.f oty A+ Alp-ty A @) 8 Bty Bap1)gBotpy A -+ A Bogpag-1)
OESV_Lq
=(=1)7 Z SEN(O)op) *** Aoprg-nitaf (@ot) A - A op-1) ® bot) -~ bop-1)9 (Do) A -+ A Do(pag-1)
GES;;_L,]

=(=1)10p_1 4(tof ® g)((ﬂl ®b1) A (@2 ®b) A+ A(apsg-1® bp+q71))'

Hence 151 (P(f ® 7)) = (=1)1Dp_14(to f ® g). Similarly, 119, (P(f ® g)) = Dp4-1(f ® 1og). Thus we finish the
proof.

4. Tensor product of Frobenius Poisson algebras

In fact, tensor Poisson algebras can also be defined for Frobenius Poisson algebras. In this section, we
consider the tensor products of Frobenius Poisson algebras and conclude the similar results in the previous
section. Let us first recall the modular derivations for Frobenius Poisson algebras, which are different from
those of smooth Poisson algebras.
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Definition 4.1. [31] Let R be a Frobenius Poisson algebra with the non-degenerated bilinear form (—,—). lIts
modular derivation is defined as the map D : R — R such that, foranya € Rand x € R,

(D(a),x) = (1, {a, x}).

For any unimodular Frobenius Poisson algebra R, (HP*(R), A, A) is a BV-algebra ([36, Theorem 4.10] ).
Note that the BV operator here is different from the one in smooth algebras case.
However, pseudo-unimodular Poisson structures can also be defined for Frobenius algebras similarly.

Definition 4.2. ([20| Definition 10] ) Let R be a Frobenius Poisson algebra with Poisson structure 7. Then R is said
to be pseudo-unimodular if there exists a de Rham 1-cocycle @ € Q'(R) such that 1,7 is a modular derivation of R.

Let R be a pseudo-unimodular Frobenius Poisson algebra with poisson structure 7. Then (HP*(R), A, A;)
is a BV-algebra, where

Ar=A—=N, N(P) = (1)L, (P), 4.1)

® € QY(R) is the de Rham 1-cocycle such that 1,7 is a modular derivation of R (see[20, Theorem 2]).
Furthermore, for a Frobenius Poisson algebra R, its Poisson cohomology admits a BV-operator induced
from X*(R), iff it is pseudo-unimodular ([20, Corollary 2]).

Suppose that R and S are Frobenius Poisson algebras. Then the tensor Poisson algebra R® S is also a
Frobenius Poisson algebra, and equation(3.1)

P(r®s) = Pr(r) ®s+r®@Ps(s), Vr®s e R®S,
still holds (see [30, Theorem 4.4]). Thus Proposition[3.2]is also valid in Frobenius algebras case. That is

Proposition 4.3. If Rand S are pseudo-unimodular Frobenius Poisson algebras, then so is the tensor Poisson algebra
R®S.

Corollary 4.4. If R and S are pseudo-unimodular Frobenius Poisson algebras, then the Poisson cohomologies
HP*(R), HP*(S), HP*(R ® S) are all BV algebras, and HP*(R) ® HP"(S) carries the structure of a BV algebra as
the tensor product of two BV algebras.

In the following, we'll prove that HP*(R) ® HP*(S) = HP*(R ® S) as BV algebras in the corollary above.

Now we fix some notations. In the following, R is a Frobenius Poisson algebra with the non-degenerated
bilinear form (—,—)r. Then (¥*(R), A, A) is a Batalin-Vilkovisky algebra ([36, Theorem 4.5]), where for
P € XP(R), A(P) € XP71(R) is given by

(AP)(ay ANay A--- A llp_l),llp>R = (—1)p_1<P(111 ANdy AN--+ A llp), D)r.

Suppose S is also a Frobenius Poisson algebra with the non-degenerated bilinear form (-, —)s. Then the
BV operator on X*(S) is given by

(AQ)(by Aby A+ Abgy), bpys = (=1)77Q(by Aby A+ Abg), s.

for any Q € X1(S).
Consider the tensor algebra R®S. It’s still a Frobenius Poisson algebra with the non-degenerated bilinear
form (—, —):
(r®s, v ®s’y :={r,r' )g{s,s')s,¥r,7 € R,s,5" € 8S.

The BV operator on X*(R ® S) is given by
(MMt Aca A= Aeer) ey = ()T Aca A= Acp), 1@ 1),

forany T € ¥/(R®S).
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Theorem 4.5. Let R and S be pseudo-unimodular Frobenius Poisson algebras. There is an isomorphism of BV
algebras
HP*(R) ® HP*(S) = HP*(R ® S).

Proof. Similar to the smooth algebras case, we should prove the isomorphism @ preserves the BV operator
in the Frobenius algebras case,
ie.

AD(f ® ) = PA(f ® 9) = Dp-1,4(Af ® 9) + (=1) Dy 4-1(f ® Ag), 4.2)
and
AD(f ®g) = PAe(f ® 9) = Pp1,4(Atf ® ) + (=1)'Dp -1 (f ® Arg),

for any f € XP(R) and g € X9(S). Here A, is the twisted BV operator for pseudo-unimodular Frobenius
Poisson algebra (see (4.1)). Note that the twisted part A is similar to the smooth algebras case (3.2), and
we’ve proved that @ preserves A’ in Theorem Hence, we only need to prove (4.2).

By the definition of BV operators A, it suffices to show that

<®A®(f ® g)((&h ® bl) A (az ® bz) VANREEIVAN (ap+q—1 ® bp+q—1))' Ap+q ® bp+q>
= (CDPID(F © g)((@1 ® b1) A (@2 ®b2) A+ A (@ysg @ byeg)), 1 ©1).

In fact,

(DT TD(f ® g) (@1 @ b1) A (a2 ®b2) A=+ A (@ @ bpig)), 1©1)

=(=DPIICY " g0t e Aoy A+ A o) ® bogty - bogBugpat) A+ A bipeg), 1@ 1)

0€Sy,

=(-1)¥*a-h Z sgn(0){as(p+1) * * Aoprg) f@o) A -+ A o), DR - bty = bop)§(Bope1) A -+ A bopag)), 1)s

0€Sy,

:(_1)(%&]*1) Z Sgn(G)(lla(p+1) e ﬂo(p+q)f(aa(1) A Nagp-1) A ap+q)r Dr

0€Spyq
o(p)=p+q

: (bo(l) cee bo(p—l)bp+qg(bo(p+l) JARERIAN ba(p+q))/ 1)s
+ (=1)raD Z sgn(0){As(p+1) " * Ao(prq-1)ap+q f (@o1) A -+ A o)), DR

€Sy,
o(p+q)=p+q

“Abo(1) * *  bo)g(Dop+1) A+ A boprg-1) A bpig), Ds
=(-1)%Y Z SgN(0)ao(p) **+ Aoprq-1)f(@o) A+ A op-1) A prg), v

O'ESP,Lq
. <bo(1) T bo(p—l)bp+qg(bo(p) ARRRA ba(p+q—1))/ 1>S
+ (_1)(p+q—1) Z Sgn(0)<ﬂa(p+1) e 'a()'(p+q—1)ap+qf(a6(1) ARERIA aﬁ(p))/ Dr

0€Sp4-1

“(boqy Lo g(bope1) A -+ A Doprg-1) A bpag), Ds
=B1+ B2,

where B1 and B2 denote the two parts of the sum respectively.
While

(PA(f ® 9)((a1 ®b1) A (a2 ®ba) A -+ A (@p1g-1 ® bpig-1)), Aprq ® bpig)
=<(q)p—1,q(Af ®g) + (_1)p®p,q—1(f ® Ag))((“l ®br) A A (ap+q—1 ® bp+q—1))/ Apyq @ bp+q>
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:< Z Sgn(d)ﬂo(p) T aﬁ(p+q—1)Af(a0(1) ARRA ad(p—l))

0€Sy-14
® bo(ay -+ - bop-1)9 (o) A -+ A bo(prg-1)), Ap+q ® bpig)
+{(=1)¥ Z sgN(0)ag(p+1) * * * Aa(prg-1) f (s1) A+ + A lo(p))

0€Sp4-1
® ba(1) by AGLo(ps1) A+ A ba(prg-1)), Bpsq ® bysg)
= Z SN(0)(p) * * * Ao(paq-D)Af (Ao(1) A -+ A lo(p-1)), Bp+g)R
0€S)-14
“(bo) * bop-1)9(bop) A+ A boprg-1)), bp+g)s
(DY, 580N Botpeq1 f@o) A A o), Bpsg)R

0€Sp4-1
Aboqy * bo)AG(bop+1) A -+ A bopag-1)), bpag)s
= Y, s80(OAf o) A A o), Gutr) - Botprg-1Apsg)R
0€S)-14
“o1) "+ bop-19 (bo(p) A -+ A Doprg-1)), Bprgds
+(=1y Z SO o(p+1) ** * Ao(prg-1) [ (o) A -+ A Ag(p)), Ap+g)R
0€Sp -1
(Ag(bsp+1) A -+ A bopag-1)), bot) -+ - bo)bpeg)s
=177 ) BN (o) A+ Aot Aa - Baiprg-apsq) D
0€S)-1,4

“(bo1) ** * bap-1)9Oap) A -+ A Dopeg-1)), bp+g)s

+ (_1)p+q—1 Z Sgn(0)<ﬂa(p+1) T aa(p+q—1)f(aa(1) A A aG(P))r ap+q>R
UES};,Hq
: <g(ba(p+1) Ao A ba(p+q—1) A bo‘(l) e ba(p)bp+q)/ 1>S
=Al + A2,

where Al and A2 denote the two parts of the sum respectively.
Since f is a p-derivation,

Al = (-1 Z sgn(0){as(p) - * * Aopag-1) f[@o) A+ A Ggp-1) A Gprg), 1R

O‘ESP_Lq

'<ba(1) cee ba(p—l)bp+qg(ba(p) ARBRNAY bo(p+q—1))r 1)s

HE1PT Y B0 flay A+ Aoy Al -~ Bofprg-1)s Bpeg)R

UES},,L[]

’<bo(1) T bo(p—l)g(ba(p) ARRRA bd(p+q—1))/ bp+q>S-

Note that the first part of the sum is exactly B1. Denote the second part by A11, and

AL =17 Y Y g0 Tai + Ao(prg-1 f@on) A+ Aoty A Ba), Bpeg)i

0€Sy-1, p<k<p+q-1

“(bo1) -+ bop-1)gbap) A -+ A Dopig-1)), bp+g)s.

2925
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Similarly, one can check that A2 = B2 + A22, where

A22 = (17" N sgn(ONaap) - Boprg-f@om) A+ A o), Bprg)R

0€Sy4-1
{9(bop) A+ Abogpeg-1) A born)*a) Dpeg)s
= (_1)p+q71 Z Z Sgn(0)<ﬂo(p+1) te aa(p+q—1)f(ao(l) A A aa(p))/ ﬂp+q>R

0€Spq-1 1<I<p

<oty Doty bo(boprt) A -+ A Botprg-1) A Do), bpag)s.

Considering the 1-1 correspondence between {(0,k)lc € S,-1,4,p <k <p+g—1}and {(¢',))lo" € Sp4-1,1 <
I < p}, we can get A11 + A22 = 0. Thus A1 + A2 = B1 + B2. The proof is finished.
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